Multimedia Computing and Computer Vision Lab

Login  

Home

     

Courses

     

People

     

Research

     

Publications

     

Student Theses

     

Source Code / Datasets

     

Contact

     

SS 12: Bayesian Networks

From Multimedia Computing Lab - University of Augsburg


Registration is open now! LectureReg

Overview

Instructors: Prof. Dr. Rainer Lienhart, Fabian Richter
Time Lecture: Mon, 12:15 - 13:45, Room: 1058 N (starts 16.4.2012)
Time Exercise: Mon, 15:45 - 17:15, Room: 2045 N (starts 30.4.2012)
Credits: 2 + 2 SWS, Schein, yes, LP 5
Examine: Mo, 30.07.12, 10:00 - 11:30 Uhr, 2045 N
Multimedia Teilbereiche: Multimedia Methoden, Multimedia Anwendungen, Systemnahe Grundlagen von Multimedia


In order to be admitted to the final exam, students are required to register with the course in LectureReg and STUDIS. No additional requirements are imposed.

News

  • [06.03.2012] Page creation.
  • [02.07.2012] No exercise will be held next Monday (09.07). The last assignment will be discussed on Monday, 16.07.
  • [01.08.2012] You can inspect your exams on Monday, August 6, 2012 at 10:00 in room 1020N.

Literature

MAIN REFERENCE:

  1. Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall Series in Artifical Intelligence, 2004. ISBN 0-13-012534-2

ADDITIONAL REFERENCE:

  1. Daphne Koller, Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009. ISBN 978-0262013192

Important Comments

  • Vorlesung wird auf Deutsch gehalten (trotz der englischsprachigen Folien und Literatur)
  • All reading notes are relevant for the exams independent on how thoroughly they have been discussed during the lecture. Thus read and study them carefully.

Material

Date Content Slides Exercise
16.04.2012 Lec 1: Introduction PDF
23.04.2012
30.04.2012
Lec 2: Basic of Probability Theory - Part 1 PDF PDF
07.05.2012
14.05.2012
Lec 3: Basic of Probability Theory - Part 2(a) PDF PDF, Solution
14.05.2012
21.05.2012
Lec 4: Basic of Probability Theory - Part 2(b) PDF PDF
21.05.2012 Lec 5: Bayesian Network based Face Detection PDF PDF
PDF
04.06.2012 Lec 6: Inference - Part 1 PDF PDF
18.06.2012
18.06.2012
Lec 7: Inference - Part 2 PDF PDF
25.06.2012 Lec 8: Inference - Part 3 PDF PDF
02.07.2012 Lec 9: Influence Diagrams PDF PDF
02.07.2012 Lec 10: Parameter Learning - Part 1 PDF PDF
09.07.2012 Lec 11: Parameter Learning - Part 2 PDF
16.07.2012 Fragestunde