Multimedia Computing and Computer Vision Lab

Login  

Home

     

Courses

     

People

     

Research

     

Publications

     

Student Theses

     

Source Code / Datasets

     

Contact

     

SS 11: Bayesian Networks

From Multimedia Computing Lab - University of Augsburg


Registration is open now! LectureReg

Overview

Instructors: Prof. Dr. Rainer Lienhart, Fabian Richter
Time Lecture: Mon, 12:15 - 13:45, Room: 1057 N
Starts May, 2nd 2011
Time Exercise: Mon, 15:45 - 17:15, Room: 1057 N LectureReg
Starts May, 16th 2011
Credits: 2 + 2 SWS, Schein, yes, LP 5
Examine: Mo, 01.08.11, 11:30 - 13:00 Uhr, 1058 N
Mo, 01.08.11, 11:30 - 13:00 Uhr, 1057 N
Multimedia Teilbereiche: Multimedia Methoden, Multimedia Anwendungen, Systemnahe Grundlagen von Multimedia


In order to be admitted to the final exam, students are required to register with the course in LectureReg. No additional requirements are imposed.

News

  • The registration in LectureReg is open now.

Literature

MAIN REFERENCE:

  1. Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall Series in Artifical Intelligence, 2004. ISBN 0-13-012534-2

ADDITIONAL REFERENCE:

  1. Daphne Koller, Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009. ISBN 978-0262013192

USEFULL C++ REFERENCES:

  1. Simon Hoffmann and Rainer Lienhart. OpenMP: Eine Einf├╝hrung in die parallele Programmierung mit C/C++', Springer Verlag, April 2008, ISBN: 978-3-540-73122-1. (zur Verlagsseite)

Important Comments

  • Vorlesung wird auf Deutsch gehalten (trotz der englischsprachigen Folien und Literatur)
  • All reading notes are relevant for the exams independent on how thoroughly they have been discussed during the lecture. Thus read and study them carefully.

Material

Date Content Slides Exercise
02.05.2011 Lec 1: Introduction PDF
09.05.2011
16.05.2011
Lec 2: Basic of Probability Theory - Part 1 PDF PDF
16.05.2011
23.05.2011
Lec 3: Basic of Probability Theory - Part 2(a) PDF PDF, Solution
23.05.2011
30.05.2011
Lec 4: Basic of Probability Theory - Part 2(b) PDF PDF
06.06.2011 Lec 5: Bayesian Network based Face Detection PDF PDF
PDF
13.06.2011 Lec 6: Inference - Part 1 PDF PDF
20./27.06.2011 Lec 7: Inference - Part 2 PDF PDF
04.07.2011 Lec 8: Inference - Part 3 PDF PDF
11.07.2011 Lec 9: Influence Diagrams PDF PDF
11.07.2011 Lec 10: Parameter Learning - Part 1 PDF
18.07.2011 Lec 11: Parameter Learning - Part 2 PDF
25.07.2011 Fragestunde