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Position Calibration of Microphones and
Loudspeakers in Distributed Computing Platforms

Vikas C. Raykar∗, Igor Kozintsev and Rainer Lienhart

Abstract— In this paper we present a novel algorithm to
automatically determine the relative 3D positions of audio sensors
and actuators in an ad-hoc distributed network of heterogeneous
general purpose computing platforms such as laptops, PDAs and
tablets. A closed form approximate solution is derived, which
is further refined by minimizing a non-linear error function.
Our formulation and solution accounts for the lack of temporal
synchronization among different platforms. We compare two
different estimators, one based on the Time Of Flight (TOF)
and the other based on Time Difference Of Flight (TDOF).
We also derive an approximate expression for the mean and
covariance of the implicitly defined estimator using the implicit
function theorem and approximate Taylors’ series expansion.
The theoretical performance limits for the sensor positions are
derived via the Cramér-Rao bound and analyzed with respect to
the number of sensors and actuators as well as their geometry.
We report extensive simulation results and discuss the practical
details of implementing our algorithms in a real-life system.

Index Terms— Multi-channel signal processing for audio
and acoustics applications, Microphone array calibration, Self-
localizing sensor networks, Self-position calibration, Multidimen-
sional scaling, Craḿer-Rao bound.

I. I NTRODUCTION AND MOTIVATION

A RRAYS of audio/video sensors and actuators (such as
microphones, cameras, speakers and displays) along with

array processing algorithms offer a rich set of new features for
emerging multimedia applications. Until now, array processing
was mostly out of reach for consumer applications perhaps
due to significant cost of dedicated hardware and complexity
of processing algorithms. At the same time, recent advances
in mobile computing and communication technologies suggest
a very attractive platform for implementing these algorithms.
Students in classrooms, co-workers at meetings, family mem-
bers at home are nowadays accompanied by one or several
mobile computing and communication devices like laptops,
PDAs, tablets, with multiple audio and video I/O devices
onboard. We collectively refer to such devices as General
Purpose Computers (GPCs). An ad-hoc network of GPCs can
be used to capture/render different audio-visual scenes in a
distributed fashion leading to novel emerging applications.
A few examples of such applications include multi-stream
audio/video rendering, smart audio/video conference rooms,
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Fig. 1. Distributed computing platform consisting ofN general-purpose
computers along with their onboard audio sensors, actuators and wireless
communication capabilities.

meeting recordings, automatic lecture summarization, hands-
free voice communication, object localization, and speech
enhancement. The advantage of such an approach is that
multiple GPCs along with their sensors and actuators can be
converted to a distributed sensor network in an ad-hoc fashion
by just adding appropriate software layers. No dedicated
infrastructure in terms of the sensors, actuators, multi-channel
interface cards and computing power is required. However,
there are several important technical and theoretical problems
that need to be addressed before the idea of using GPCs for
array signal processing algorithms can materialize in real-life
applications. A prerequisite for using distributed audio-visual
I/O capabilities is to put sensors and actuators into a common
time and space (coordinate system). In [1] we proposed a way
to provide a common time reference for multiple distributed
GPCs with the precision of ten’s of microseconds. In this paper
we focus on providing a common space (relative coordinate
system) by means of actively estimating the three dimensional
positions of the sensors and actuators. Many multi-microphone
array processing algorithms (like sound source localization or
conventional beamforming) need to know the positions of the
microphones very precisely. Even relatively small uncertainties
in sensor location could make substantial, often dominant,
contributions to overall localization error [2].

Figure 1 shows a schematic representation of ourdistributed
computing platformconsisting ofN GPCs. In our setting,
one of them is configured to be the master. The master
controls the distributed computing platform and performs the
location estimation. Each GPC is assumed to be equipped
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with audio sensors (microphones), actuators (speakers) for
performing audio I/O, and wireless communication capabilities
for exchanging data between each other.

A. Previous work

Current audio array processing systems either rely on plac-
ing the microphones in known locations or manual calibration
of their positions. There are some approaches which do
position calibration using speakers in known locations. [3]
describes an experimental setup for automatic calibration of
a large-aperture microphone array using acoustic signals from
transducers whose locations are known. We follow a more
general approach where we assume that the speakers locations
are also unknown. A lot of related theoretical work can be
found in [2], [4], [5]. Most of the formulations assume that
all the sensors and actuators are on a synchronized setup
i.e capture and playback occur simultaneously. However in
a typical distributed setup we start the audio capture and
playback on each GPC one by one and the playback and
the capture start time are generally unknown. Our solution
explicitly accounts for the errors in localization due to lack of
temporal synchronization among different platforms. A recent
paper [6] accounts only for the unknown source emission time.
The solution turns out to be a non-linear minimization problem
which requires a good starting point to reach the global
minimum. We derive a closed form approximate solution to be
used as initial guess for the minimization routine. The problem
of self-localization for a network of nodes has also been dealt
in the wireless network and robotics community [6]–[8]. The
problem is essentially the same as in our case but the ranging
method differ depending on the sensors and actuators.

B. Contributions

The following are the novel contributions of this paper.

• We propose a novel setup for array processing algorithms
with ad-hoc connected GPCs.

• The position estimation problem has been derived as a
maximum likelihood in several papers [3], [4], [6]. The
solution turns out to be the minimum of a nonlinear
cost function. Iterative nonlinear least square optimization
procedures require a very close initial guess to converge
to a global maximum. We propose the technique of metric
Multidimensional Scaling (MDS) [9] in order to get an
initial guess for the nonlinear minimization problem.
Using this technique, we get the approximate positions
of GPCs.

• Most of the previous work on position calibration (except
[8] which describes a setup based on Compaq iPAQs
and motes) are formulated assuming time synchronized
platforms. However in an ad-hoc distributed computing
platform consisting of heterogeneous GPCs we need to
explicitly account for errors due to lack of temporal syn-
chronization. We perform an analysis of the localization
errors due to lack of synchronization among multiple
platforms and propose ways to account for the unknown
emission start times and capture start times.

• Most of the existing localization methods use the Time
Of Flight (TOF) approach for position calibration [3], [6],
[8]. We show that for distributed computing platforms,
the method based on Time Difference of Flight (TDOF)
is better than the TOF method in many respects.

• We derive the approximate mean and covariance of the
implicitly defined estimator using the implicit function
theorem and Taylor series expansion as in [10]. We also
derive the Cram̀er-Rao bound and analyze the localization
accuracy with respect to the number of sensors and sensor
geometry.

C. Organization

The rest of the paper is organized as follows. In Section II,
we formulate the problem and derive the Maximum Likelihood
(ML) estimator. We derive two estimators, one based on TOF
and the other based on TDOF. In Section III we derive an
approximate closed form solution, which can be used as an
initial guess for the non-linear minimization routine. In Section
IV we derive the theoretical mean and covariance of the
estimated parameters. The Cramér-Rao bound is derived and
analyzed for its sensitivity with respect to the number of
sensors and actuators as well as their geometry. In Section
V, extensive simulation results are reported. Section VI gives
a discussion of the issues involved in designing a practical
system. Section VII, concludes with a summary of the present
work, and with a discussion on possible extensions.

II. PROBLEM FORMULATION

Given a set ofM acoustic sensors (microphones) andS
acoustic actuators (speakers) in unknown locations, our goal
is to estimate their three dimensional coordinates. We assume
that each of the GPCs has at least one microphone and one
speaker. We also assume that at any given instant we know the
number of sensors and actuators in the network. Any new node
entering/departing the network announces its arrival/departure
by some means, so that the network of sensors and actuators
can be recalibrated.

Each of the speaker is excited using a known calibration
signal such as maximum length sequence or chirp signal and
the signal is captured by each of the acoustic sensors. The
Time of Flight (TOF) is estimated from the captured audio
signal. The TOF for a given pair of microphone and speaker
is defined as the time taken by the acoustic signal to travel
from the speaker to the microphone1. We assume that the
signals emitted from each of the speakers do not interfere
with each other i.e. each signal can be associated with a
particular speaker. This can be achieved by confining the signal
at each speaker to disjoint frequency bands or time intervals.
Alternately, we can use coded sequences such that the signal
due to each speaker can be extracted at the microphones
and correctly attributed to the corresponding speaker. The
MS TOF measurements constitute our observations, based
on which we have to estimate the microphone and speaker
positions.

1In some papers, TOF is referred to as Time Of Arrival (TOA).
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Let mi for i ∈ [1, M ] and sj for j ∈ [1, S] be the three
dimensional vectors representing the spatial coordinates of the
ith microphone andjth speaker, respectively. We excite one
of the S speakers at a time and measure the TOF at each of
the M microphones. LetTOF actual

ij be the actual TOF for
the ith microphone due to thejth source. Based on geometry
the actual TOF can be written as (assuming a direct path),

TOF actual
ij =

‖ mi − sj ‖
c

(1)

wherec the speed of sound in the acoustical medium2 and
‖‖ is the Euclidean norm. The TOF, which we estimate based
on the signal captured confirms to this model only when all
the sensors start capturing at the same instant and we know
when the calibration signal was sent from the speaker. This is
generally the case when we use multichannel sound cards to
interface multiple microphones and speakers3.

However in a typical distributed setup of GPCs as shown in
Figure 1, the master starts the audio capture and playback on
each of the GPCs one by one. As a result the capture starts at
different instants on each GPC and also the time at which the
calibration signal was emitted from each loud speaker are not
known. As a result, the TOF which we measure includes both
the speaker emission start time and the microphone capture
start time (See Figure 2 whereˆTOF ij is what we measure
andTOFij is what we require).

The speaker emission start time is defined as the time
at which the sound is actually emitted from the speaker.
This includes the time when the play back command was
issued (with reference to some time origin), the network delay
involved in starting the playback on a different machine (if the
speaker is on a different GPC), the delay in setting up the audio
buffers and also the time required for the speaker diaphragm to
start vibrating. The emission start time is generally unknown
and depends on the particular sound card, speaker and the
system state such as the processor workload, interrupts, and
the processes scheduled at the given instant. The microphone
capture start time is defined as the time instant at which
capture is started. This includes the time when the capture
command was issued, the network delay involved in starting
the capture on a different machine and the delay in transferring
the captured sample from the sound card to the buffers.

Let tsj be the emission start time for thejth source andtmi

be the capture start time for theith microphone with respect to
some origin (see Figure 2). Incorporating these two the actual
TOF now becomes,

ˆTOF
actual

ij = TOF actual
ij + tsj − tmi

=
‖ mi − sj ‖

c
+ tsj − tmi (2)

The origin can be arbitrary sinceˆTOF
actual

ij depends on the
difference oftsj andtmi. We start the audio capture on each

2The speed of sound in a given acoustical medium is assumed to be
constant. In air it is given byc = (331 + 0.6T )m/s, where T is the
temperature of the medium in celsius degrees.

3For multichannel sound cards all the channels are synchronized and the
time when the calibration signal was sent can be determined by doing a loop
back from the output to the input. This loopback signal can be used as a
reference to estimate the TOF.

t
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ijTOF

Capture Started

Playback Started

Time Origin

Fig. 2. Schematic indicating the unknown emission and capture start time.

GPC one by one. We define the microphone on which the
audio capture was started first as our first microphone. In
practice, we settm1 = 0 i.e. the time at which the first
microphone started capturing is our origin. We define all other
times with respect to this origin.

If two audio input and output channels are available on a
single GPC then one of the output channels can be used to
play a reference signal which is RF modulated and transmitted
through the air [1]. This reference signal can be captured in
one of the input channels, demodulated and used to estimate
tsj − tmi, since the transmission time for RF waves can be
considered almost zero. Note that this assumes that all audio
channels on the same I/O device are synchronized, which is
generally true. However this method requires more hardware
in terms of RF modulators/demodulators. The other solution is
to jointly estimate the unknown source emission and capture
start time along with the microphone and source coordinates.

A. Time Difference Of Flight

In this paper we propose to use the Time Difference Of
Flight instead of the TOF. The TDOF for a given pair of
microphones and a speaker is defined as the time difference
between the signal received by the two microphones4. Let
TDOF estimated

ikj be the estimated TDOF between theith

and thekth microphone when thejth source is excited. Let
TDOF actual

ikj be the actual TDOF. It is given by

TDOF actual
ikj =

‖ mi − sj ‖ − ‖ mk − sj ‖
c

(3)

Including the source emission and capture start times, it
becomes

ˆTDOF
actual

ikj =
‖ mi − sj ‖ − ‖ mk − sj ‖

c
+ tmk − tmi

(4)
In the case of TDOF the source emission time is the same for
both microphones and thus gets cancelled out. Therefore, by
using TDOF measurements instead of TOF we can reduce the
number of parameters to be estimated.

4GivenM microphones andS speakers we can haveMS(M−1)/2 TDOF
measurements as opposed toMS TOF measurements. Of theseMS(M −
1)/2 TDOF measurements only(M − 1)S are linearly independent.
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B. Maximum Likelihood Estimate

Assuming an additive Gaussian5 noise model for the TDOF
observations we can derive the Maximum Likelihood estimate
as follows. LetΘ, be a vector of lengthP × 1, representing
all the unknown non-random parameters to be estimated
(microphone and speaker coordinates and microphone capture
start times). LetΓ, be a vector of lengthN × 1, representing
noisy TDOF measurements. LetT (Θ), be a vector of length
N ×1, representing the actual value of the observations. Then
our model for the observations isΓ = T (Θ) + η whereη is
the zero-mean additive white Gaussian noise vector of length
N × 1 where each element has the varianceσ2

j . Also let us
defineΣ to be theN×N covariance matrix of the noise vector
η. The likelihood function ofΓ in vector form can be written
as:

p(Γ/Θ) = (2π)−
N
2 | Σ |− 1

2 exp−1
2
(Γ−T )T Σ−1(Γ−T ) (5)

The log-likelihood function is given by

ln p(Γ/Θ) = −N

2
ln(2π)− 1

2
ln | Σ | −1

2
(Γ−T )T Σ−1(Γ−T )

(6)
The ML estimate ofΘ is the one which maximizes the log
likelihood ratio and is given by

Θ̂ML = argΘ max F (Θ, Γ)

F (Θ,Γ) = −1
2
[Γ− T (Θ)]T Σ−1[Γ− T (Θ)] (7)

Assuming that that each of the TDOFs are independently
corrupted by zero-mean additive white Gaussian noise of
variance σ2

ikj the ML estimate becomes a nonlinear least
squares problem (in this caseΣ is a diagonal matrix), i.e.

Θ̂ML = argΘ min[F̃TDOF (Θ, Γ)]

F̃TDOF (Θ, Γ) =
S∑

j=1

M∑

i=1

M∑

k=i+1

(TDOF estimated
ikj − ˆTDOF

actual

ikj )2

σ2
ikj

(8)

Tn case of TOF measurements the ML estimate can be derived
as above and is given by,

Θ̂ML = argΘ min[F̃TOF (Θ, Γ)]

F̃TOF (Θ,Γ) =
S∑

j=1

M∑

i=1

(TOF estimated
ij − TOF actual

ij )2

σ2
ij

(9)

In this caseΘ also includes the speaker emission start times.

C. Reference Coordinate System

Since the TOF and TDOF depends on pairwise distances,
any translation and rotation of the coordinate system, will also
be a global minimum. In order to eliminate multiple global
minima we select three arbitrary nodes to lie in a plane such

5We estimate the TDOF or TOF using Generalized Cross Correlation (GCC)
[11]. The estimated TDOF or TOF is corrupted due to ambient noise and room
reverberation. For high SNR the delays estimated by the GCC can be shown
to be normally distributed with zero mean. [11].

that the first is at(0, 0, 0), the second at(x1, 0, 0), and the
third at (x2, y2, 0). Basically we are fixing a plane so that the
sensor configuration cannot be translated or rotated. In two
dimensions we select two nodes to lie on a line, the first at
(0, 0) and the second at(x1, 0). To eliminate the ambiguity
due to reflection along the Z-axis (or Y-axis in 2D) we specify
one more node to lie in the positive Z-axis (or positive Y-axis
in 2D). Also the reflections along the X-axis and Y-axis (for
3D) can be eliminated by assuming the nodes, which we fix,
to lie on the positive side of the respective axes, i.e.x1 > 0
andy2 > 0.

Since the TDOF and TOF depends on time differences (i.e.
tsj − tmi in case of TOF andtmk − tmi in case of TDOF)
there are multiple global minima due to shifts in the time axis.
Similar to fixing a reference coordinate system in space we
introduce a reference time line by settingtm1 = 0. This is
needed since we are estimating the absolute source emission
and capture start times6. Note we are only interested in the
positions of the microphones and speakers. The emission and
capture times are just nuisance parameters.

D. Non-Linear Least Squares

The ML estimate for the node coordinates of the micro-
phones and speakers is implicitly defined as the minimum of
the non-linear function defined in Equation 8. This function
has to be minimized using numerical optimization meth-
ods. Least squares problems can be solved using a general
unconstrained minimization. However there exist specialized
methods like the Gauss-Newton and the Levenberg-Marquardt
method which are often more efficient in practice. The
Levenberg-Marquardt method [12] is a popular method for
solving non-linear least squares problems. For more details on
nonlinear minimization refer to [13]. Appendix II gives the non
zero partial derivatives needed for the minimization routines7.
The common problem with minimization methods is that they
often get stuck in a local minima. Good initial guesses of
the node locations counteract the problem. In Section III we
derive an approximate closed form solution which can be used
to initialize the minimization routine.

E. Minimum number of microphones and speakers required

Non-linear least squares optimization requires that the to-
tal number of observations is greater than or equal to the
total number of parameters to be estimated. This imposes
a minimum number of microphones and speakers required
for the position estimation method to work. Assuming we
have M microphones andS speakers Table I summarizes
the number of independent observations (N ) and the number
of parameters to be estimated (P ) in each of the estimation
procedures. In case of the TDOF based method onlyM−1 out
of M(M−1)/2 pair of TDOF measurements for each speaker

6If we are estimating the difference then we do not need a time ref-
erence. However estimating the difference introduces a lot of unnecessary
parameters(O(N2) parameters instead ofO(N) parameters).

7Many commercial software solutions are available for the Levenberg-
Marquardt method such aslsqnonlin in MATLAB, mrqmin provided by
Numerical Recipes in C [14] , and the MINPACK-1 routines [15]
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TABLE I

TOTAL NUMBER OF INDEPENDENT OBSERVATIONS(N ) AND PARAMETERS

TO BE ESTIMATED(P ) FOR DIFFERENT ESTIMATION PROCEDURES: M =

NUMBER OF M ICROPHONES, S = NUMBER OF SPEAKERS, D = DIMENSION

N P

TOF MS DM + DS − D(D+1)
2

Position

TDOF (M − 1)S DM + DS − D(D+1)
2

Position

TOF MS (D + 1)M + (D + 1)S − D(D+1)
2

− 1

Joint

TDOF (M − 1)S (D + 1)M + DS − D(D+1)
2

− 1

Joint

TABLE II

M INIMUM VALUE OF M ICROPHONESPEAKER PAIRS (K) REQUIRED FOR

DIFFERENT ESTIMATION PROCEDURES(D=DIMENSION)

K ≥ D = 2 D = 3

TOF Position Estimation 3 5

TDOF Position Estimation 5 6

TOF Joint Estimation 6 7

TDOF Joint Estimation 6 7

are linearly independent. AssumingM=S=K, the Table II lists
the minimumK required for least squares fitting.

III. C LOSED FORM APPROXIMATE SOLUTION

In this section we make some approximations to get closed
form solutions to the microphone and speaker positions and
the capture start times.

A. Initial Guess for capture and emission start times

Consider two laptopsi and j each having one microphone
and one speaker. For these two laptops we can measure

ˆTOF ii, ˆTOF jj , ˆTOF ij and ˆTOF ji. Assuming no noise
these are related to the actualTOF as follows:

ˆTOF ii = TOFii + tsi − tmi

ˆTOF jj = TOFjj + tsj − tmj

ˆTOF ij = TOFij + tsj − tmi

ˆTOF ji = TOFji + tsi − tmj (10)

Assuming sufficient closeness between the microphone and
speaker on the same laptop compared to the distance between
two laptops, the following approximations can be made.

TOFii ≈ TOFjj ≈ 0
TOFij ≈ TOFji (11)

Substituting we have the following equations:

ˆTOF ii ≈ tsi − tmi

ˆTOF jj ≈ tsj − tmj

ˆTOF ij ≈ TOFij + tsj − tmi

ˆTOF ji ≈ TOFij + tsi − tmj (12)

From the above equations we can solve forTOFij as:

TOFij ≈ ( ˆTOF ij + ˆTOF ji)− ( ˆTOF ii + ˆTOF jj)
2

(13)

Also we can solve for the microphone capture start time and
the source emission start time as follows:

tsi ≈ ˆTOF ii + tmi

tmj ≈ ( ˆTOF ij − ˆTOF ji) + ( ˆTOF ii − ˆTOF jj)
2

+ tmi (14)

Considering the time when the capture on the first microphone
is started as zero ( i.e.tm1 = 0 ), we can solve for all the
other microphone capture start times and the speaker emission
start times. Note that all the above equations are true only
approximately. Their values have to be refined further using
the ML estimation procedure.

B. Initial Guess for microphone and speaker positions

Given the pairwise Euclidean distances betweenN nodes
their relative positions can be determined by means of metric
Multidimensional Scaling (MDS) [9]. MDS is popular in
psychology and denotes a set of data-analysis techniques for
the analysis of proximity data on a set of stimuli for revealing
the hidden structure underlying the data [16]. The proximity
data refers to some measure of pairwise dissimilarity. Given a
set ofN stimuli along with their pairwise dissimilaritiespij ,
MDS places theN stimuli as points in a multidimensional
space, such that the distances between any two points are a
monotonic function of the corresponding dissimilarity. MDS is
widely used to visually study the structure in proximity data.

If proximity data are based on the Euclidean distances, then
classical metric MDS [9] can exactly recreate the configura-
tion. Given a set ofN GPCs, letX be aN × 3 matrix where
each row represents the 3D coordinates of each GPC. Then
theN×N matrix B = XXT is called the dot product matrix.
By definition,B is a symmetric positive definite matrix, so the
rank ofB (i.e the number of positive eigen values) is equal to
the dimension of the datapoints i.e. 3 in this case. Also based
on the rank ofB we can find whether the GPCs are on a
plane or distributed in 3D. Starting with a matrixB (possibly
corrupted by noise), it is possible to factor it to get the matrix
of coordinatesX. One method to factorB is to use singular
value decomposition (SVD) [14], i.e.,B = UΣUT whereΣ
is a N ×N diagonal matrix of singular values. The diagonal
elements are arranged ass1 ≥ s2 ≥ sr > sr+1 = ..... =
sN = 0, wherer is the rank of the matrixB. The columns
of U are the corresponding singular vectors. We can write
X
′

= UΣ1/2. From X
′

we can take the first three columns
to get X. If the elements ofB are exact (i.e., they are not
corrupted by noise), then all the other columns are zero. It
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can be shown that SVD factorization minimizes the matrix
norm ‖ B −XXT ‖.

In practice, we can estimate the distance matrixD, where
the ijth element is the Euclidean distance between theith

and thejth GPC. This distance matrixD must be converted
into a dot product matrixB before MDS can be applied. We
need to choose some point as the origin of our coordinate
system in order to form the dot product matrix. Any point
can be selected as the origin, but Togerson [9] recommends
the centroid of all the points. If the distances have random
errors then choosing the centroid as the origin will minimize
the errors as they tend to cancel each other. We can obtain
the dot product matrix using the cosine law which relates the
distance between two vectors to their lengths and the cosine
of the angle between them. Refer to Appendix I for a detailed
derivation of how to convert the distance matrix to the scalar
product matrix.

1) Multidimensional Scaling with clustering:In our case
of M microphones andS speakers we cannot use MDS
directly because we cannot measure all the pairwise distances.
We can measure the distance between each speaker and all
the microphones. However we cannot measure the distance
between two microphones or two speakers. In order to apply
MDS, we cluster microphones and speakers, which are close
together. Based on the approximation discussed in the previous
section, the distancedij between theith andjth GPC is given
by

dij ≈ c ( ˆTOF ij + ˆTOF ji − ˆTOF ii − ˆTOF jj)
2

(15)

wherec is the speed of the sound.
The position estimate from MDS is arbitrary with respect

to the centroid and the orientation and is converted into the
reference coordinate system described in Section II-C. The
approximate locations of the GPCs are slightly perturbed to
get the initial guess for the microphone and speaker locations.
The following table summarizes the complete algorithm:

ALGORITHM

Say we haveM microphones andS speakers
• STEP 1: Measure theM × S Time Of Flight ( ˆTOF )

matrix.
• STEP 2:

– Form the approximate distance matrixD. (Equation
15)

– Assumetm1 = 0 (microphone on which capture was
started first) and get the approximate microphone
capture and speaker emission start times. (Equation
14)

– Convert the distance matrixD to the dot product
matrix B (Appendix I). Find the rank ofB to
determine whether the GPCs are in 2D or 3D.

• STEP 3: Form a reference coordinate system
– If 3D select three nodes: The first one as the origin,

the second to define the x-axis and the third to form
the xy-plane. Also select a fourth node to represent
the positive z-axis.
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Fig. 3. Results of Multidimensional Scaling for a network consisting of 10
GPCs each having one microphone and one speaker.

– If 2D select two nodes: The first one as the origin,
the second to define the x-axis. Also select a third
node to represent the positive y-axis.

• STEP 4:
– Get the approximate positions of the GPCs using

metric Multidimensional Scaling (SVD ofB).
– Translate, rotate and mirror the coordinates to the

coordinate system specified in STEP 3.
– Slightly perturb the coordinates to get approximate

initial guess for the microphone and speaker coor-
dinates.

• STEP 5: Minimize both the TDOF based error function
using the Levenberg-Marquardat method to get the final
positions of the microphones and speakers. Use the
approximate positions and the capture start times as the
initial guess.

Figure 3 shows an example with 10 laptops each having
one microphone and one speaker. The actual locations of
the sensors and actuators are shown as ’x’. The ’*’s are the
approximate GPC locations as determined by MDS. As can
be seen the MDS results are very close to the microphone
and speaker locations. The estimated locations are further
improved in STEP 3 and marked as ’o’s.

IV. ESTIMATOR BIAS AND VARIANCE

The ML estimate for the microphone and speaker positions
is defined implicitly as the minimum of a certain error func-
tion. Hence it is not possible to get exact analytical expressions
for the mean and the variance. However by using the implicit
function theorem and the Taylors’ series it is possible to
derive approximate expressions for the mean and variance of
implicitly defined estimators [10]. In this section we derive the
approximate expressions for both the mean and variance of the
estimators. We follow the same approach as in [10]. The ML
estimate ofΘ is the one which maximizes the log likelihood
ratio and is given by Equation 7. In further derivation we need
the first and second derivatives of Equation 7 with respect to
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Θ and Γ. Using the generalized chain rule it can be shown
that for Equation 7 the vector derivatives are as follows

∇ΘF (Θ, Γ) = JT Σ−1(Γ− T )
∇ΓF (Θ, Γ) = Σ−1(Γ− T )

∇Θ∇ΘF (Θ, Γ) = −JT Σ−1J

∇Γ∇ΓF (Θ,Γ) = Σ−1

∇Γ∇ΘF (Θ,Γ) = Σ−1J

∇Θ∇ΓF (Θ,Γ) = −JT Σ−1 (16)

where J is a N × P matrix of partial derivatives ofT (Θ)
called theJacobianof T (Θ).

[J ]ij =
∂ti(Θ)

∂θj
(17)

Refer to Appendix II for the individual derivatives of the
Jacobianmatrix.

A. Estimator Covariance

The ML estimate ofΘ is the one which maximizes the log
likelihood ratio defined in Equation 7. The maximum can be
found by setting the first derivative to zero i.e.

∇ΘF (Θ, Γ) |Θ=Θ̂= 0 (18)

where 0 is a zero column vector of lengthP . The im-
plicit function theorem guarantees that Equation 18 im-
plicitly defines a vector valued function̂Θ = h(Γ) =
[h1(Γ), h1(Γ), ..., hP (Γ)]T that maps the observation vector
Γ to the parameter vector̂Θ. Equation 18 can be written as

∇ΘF (h(Γ),Γ) = 0 (19)

However it is not possible to find an analytical expression for
h(Γ). But we can approximate the covariance using the first-
order Taylor series expansion forh(Γ). Let Γm be the mean
of Γ. Then expandingh(Γ) aroundΓm we get

h(Γ) ≈ h(Γm) + [∇Γh(Γ)T |Γ=Γm ]T (Γ− Γm) (20)

where∇Γ = [ ∂
∂γ1

, ∂
∂γ2

, ..., ∂
∂γN

]T is a N × 1 column gradient
operator. Taking the covariance on both sides yields

Cov(h(Γ)) ≈ [∇Γh(Γ)T |Γ=Γm ]T Cov(Γ)[∇Γh(Γ)T |Γ=Γm ] (21)

Note we do not knowh(Γ). Differentiating Equation 19 with
respect toΓ and evaluating atΓm yields

∇Θ∇ΘF (h(Γm),Γm)[∇Γh(Γm)T ]T +∇Θ∇ΓF (h(Γm), Γm) = 0 (22)

Assuming∇Θ∇ΘF (h(Γm), Γm) is invertible we can write

[∇Γh(Γm)T ]T = −[∇Θ∇ΘF (h(Γm), Γm)]−1∇Θ∇ΓF (h(Γm), Γm) (23)

Substituting from Equation 16 we get

[∇Γh(Γm)T ]T = −[JT Σ−1J ]−1JT Σ−1 (24)

Using this in the covariance expression, we final arrive at

CovΘ̂ = [JT Σ−1J ]−1 (25)
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Fig. 4. Craḿer-Rao bound on the total variance of the unknown microphone
coordinates as a function of TOF noise standard deviationσ for different
estimation procedures. For the TDOF- based method the noise variance was
taken as twice that of the TOF variance. The network had a total of 16
microphones and 16 speakers.

B. Estimator Mean

Taking the expectation of the first order Taylor series
expansion in Equation 20

E(h(Γ)) ≈ h(Γm) = h(T ) (26)

we see that the mean is the value given by the estimation
procedure when applied to the actual noise free measurements
T . It is also possible to get the mean using the second order
Taylor series expansion, but it involves third order derivatives
and generally we cannot get simple form as in Equation 25.

C. Craḿer-Rao Bound

The Craḿer-Rao bound gives a lower bound on the variance
of any unbiased estimate [17]. It does not depend on the
particular estimation method used. In this section, we derive
the Craḿer-Rao bound (CRB) assuming our estimator is
unbiased. The variance of any unbiased estimatorΘ̂ of Θ is
bounded as [17]

E
[
(Θ̂−Θ)(Θ̂−Θ)T

]
≥ F−1(Θ) (27)

whereF (Θ) is called the Fischer’s Information matrix and is
given by

F (Θ) = E
{

[∇Θ ln p(Γ/Θ)] [∇Θ ln p(Γ/Θ)]T
}

(28)

Any estimate which satisfies the bound with an equality is
called an efficient estimate. The ML estimate is consistent and
asymptotically efficient [17].

The derivative of the log-likelihood function (see Equation
6) can be found using the generalized chain rule and is given
by (refer Equation 16)

∇Θ ln p(Γ/Θ) = JT Σ−1(Γ− T ) (29)

whereJ is theJacobian. Substituting this in Equation 28 and
taking the expectation the Fishers Information matrix is,

F = JT Σ−1J (30)
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CovΘ̂ ≥ [JT Σ−1J ]−1 (31)

Note that this expression is the same as the approximate
covariance of the estimator derived in the previous section.

If we assume that all the microphone and source locations
are unknown, the Fisher Information matrixJT Σ−1J is rank
deficient and hence not invertible. This is because the solution
to the ML estimation problem as formulated is not invariant
to rotation and translation. In order to make the Fisher In-
formation matrix invertible we remove the rows and columns
corresponding to the known parameters.

The diagonal terms of[JT Σ−1J ]−1 represent the error
variance for estimating each of the parameters inΘ. In the next
few sections we explore the dependency of the error variance
on different parameters. Figure 4 shows Cramér-Rao bound
on the total variance of the unknown microphone coordinates
as a function of TOF noise standard deviationσ for a sensor
network consisting of 16 microphones and 16 speakers, for
different estimation procedures8.

D. Effect of nuisance parameters

The speaker emission start time and the microphone capture
start time can be considered as the nuisance parameters since
we are interested only in the microphone and speaker coor-
dinates. The effect of the nuisance parameters on the Cramér
Rao bound can be seen from Figure 4, where the total error
variance in the microphone coordinates is plotted against the
noise standard deviationσ for both normal position estimation
and joint position estimation. For both the TOF and TDOF
approaches the joint estimation results in a higher variance
which is due to the extra nuisance parameters. Among TOF
and TDOF approaches TOF has more number of nuisance
parameters and hence it has a higher variance than the TDOF
approach. Another point to be noted is that in the TDOF
approach we need not use all theM(M−1)/2 pairwise TDOF
measurements. However as we use more and more TDOF
measurements the variance decreases as can be seen in Figure
4.

E. Increasing the number of sensors and actuators

As the number of nodes increases in the network, the CRB
on the covariance matrix decreases. The more microphones
and speakers in the network, the smaller the error in estimat-
ing their positions. Figure 5(a) shows the95% uncertainty
ellipses for a regular two dimensional array consisting of 9
microphones and 9 speakers, for both the TOF and the TDOF-
based joint estimation procedures. We fixed the position of
one microphone and thex coordinate of one speaker. For the
fixed speaker only the variance iny direction is shown since
the x coordinate is fixed. For TOF-based method the noise
variance was assumed to be10−9 in order to properly visualize
the uncertainity ellipses. In order to give a fair comparison,

8In order to do a fair comparison, the corresponding TDOF noise variance
was approximated to be twice the corresponding TOF noise variance. In the
TOF case only one signal was degraded due to noise and reverberation while
the other was the reference signal. In case of TDOF both the signals are
degraded.
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Fig. 5. 95% uncertainty ellipses for a regular 2 dimensional array of (a)
9 speakers and 9 microphones, (b) 25 speakers and 25 microphones. Noise
variance in both cases isσ2 = 10−9 for the TOF-based method andσ2 =
2× 10−9 for the TDOF-based method. The microphones are represented as
crosses (×) and the speakers as dots (.). The position of one microphone and
the x coordinate of one speaker is assumed to be known (shown in bold).
The solid and dotted ellipses are the uncertainty ellipses for the estimation
procedure using the TOF and TDOF-based method respectively.

a noise variance of2 × 10−9 was assumed for the TDOF-
based method. Figure 5(b) shows the corresponding95%
uncertainty ellipses for a two dimensional array consisting
of 25 microphones and 25 speakers. It can be seen that
as the number of sensors in the network increases the size
of the uncertainty ellipses decreases. Intuitively this can be
explained as follows: Let there be a total ofn nodes in
the network whose coordinates are unknown. Then we have
to estimate a total of3n parameters. The total number of
TOF measurements available is howevern2/4 (assuming that
there aren/2 microphones andn/2 speakers). So if the
number of unknown parameters increases asO(n), the number
of available measurements increases asO(n2). The linear
increase in the number of unknown parameters, is compen-
sated by the quadratic increase in the available measurements,
which suggests that the uncertainity per unknown variable will
decrease.
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Fig. 6. 95% uncertainty ellipses for a regular 2 dimensional array of 25 microphones and 25 speakers for different positions of the known microphone and
for different x coordinates of the known speaker. In (a) and (b) the known nodes are close to each other and in (c) they are spread out one at each corner of
the grid. The microphones are represented as crosses (×) and the speakers as dots (.). Noise variance in all cases wasσ2 = 10−9. (d) Schematic to explain
the shape of uncertainty ellipses. 50 TDOF pairs were used for the estimation procedure.

F. Sensor Geometry - How to select a coordinate system?

In our formulation we assumed that we know the positions
of a certain number of nodes, i.e we fix three of the nodes to
lie in the x-y plane. The CRB depends on which of the sensor
nodes are assumed to have known positions. Figure 6 shows
the 95% uncertainty ellipses for a regular two dimensional
array containing 25 microphones and 25 speakers for different
positions of the known nodes. In Figure 6(a) the two known
nodes are at one corner of the grid. It can be seen that the
uncertainty ellipse becomes wider as you move away form
the known nodes. The uncertainty in the direction tangential
to the line joining the sensor node and the center of the known
nodes is much larger than along the line. The same can be
seen in Figure 6(b) where the known nodes are at the center
of the grid. The reason for this can be explained for a simple
case where we know the locations of two speakers as shown
in Figure 6(d). Each circular band represents the uncertainty
in the distance estimation. The intersection of the two annuli
corresponding to the two speakers gives the uncertainty region
for the position of the sensor. As can be seen for nodes far
away from the two speakers the region widens because of the
decrease in the curvature. It is beneficial if the known nodes
are on the edges of the network and as far away from each
other as possible. In Figure 6(c) the known sensor nodes are on
the edges of the network. As can be seen there is a substantial
reduction in the dimensions of the uncertainty ellipses. In order
to minimize the error due to Gaussian noise we should choose
the three reference nodes (in 3D) as far as possible. In practice,
using the TOF matrix we can choose three nodes such that the
area of the triangle formed by these three nodes is maximum.
In this way we can dynamically adapt our coordinate system
to minimize the error even though the array geometry may
change drastically.

V. M ONTE CARLO SIMULATION RESULTS

We performed a series of Monte Carlo simulations to com-
pare the performance of the different estimation procedures.
16 microphones and 16 speakers were randomly selected to
lie in a room of dimensions4.0m×4.0m×4.0m. The speaker
was chosen to be close to the microphone in order to simulate

a typical laptop. Based on the geometry of the setup the actual
TOF between each speaker and microphones was calculated
and then corrupted with zero mean additive white Gaussian
noise of varianceσ2 in order to model the room ambient
noise and reverberation. The TOF matrix was also corrupted
by known systematic errors, i.e. a known microphone emission
capture start time and speaker emission start time was added.
The Levenberg-Marquardt method was used as the minimiza-
tion routine. For each noise varianceσ2, the results were
averaged over 2000 trials. Figure 7(a) and Figure 7(b) show the
total variance and the total bias (sum of all the biases in each
parameter) of all the unknown microphone coordinates plotted
against the noise standard deviationσ for both the TOF and the
TDOF-based approach. The results are shown both for position
estimation and the Joint position and start times estimation
procedures. The Craḿer Rao bound for the TDOF-based
joint estimation procedure is also shown. Since we corrupted
the TOF with a systematic errors, the position estimation
procedure shows a very high variance and a correspondingly
high bias. Hence when the TOFs are corrupted by systematic
errors we need to do joint estimation of the positions as
well as the nuisance parameters. Even though theoretically the
TDOF-based joint estimation procedure has the least variance,
experimentally all the joint estimation procedures showed
the same variance. The estimator is unbiased for low noise
variances.

VI. I MPLEMENTATION DETAILS

A. Calibration Signals

In order to measure the TOF accurately the calibration
signal has to be appropriately selected and the parameters
properly tuned. Chirp signals and Maximum Length sequences
are the two most popular sequences for this task. A linear
chirp signal is a short pulse in which the frequency of the
signal varies linearly between two preset frequencies. The
cosine linear chirp signal of durationT with the instantaneous
frequency varying linearly betweenf0 and f1 is given by
s(t) = Acos(2π(f0 + ( f1−f0

T )t)) 0 ≤ t ≤ T In our system,
we used the chirp signal of 512 samples at 44.1kHz (11.61
ms) as our calibration signal. The instantaneous frequency
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Fig. 7. (a) The total variance and (b) total bias of all the microphone coordinates for increasing TOF noise standard deviationσ. The sensor network consisted
of 16 microphones and 16 speakers. The results are shown for both the TOF and TDOF-based Position and Joint Estimation. The Cramér Rao bound for the
TDOF based Joint Estimation is also plotted. For the TDOF-based method the noise variance was taken as twice that of the TOF variance.
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Fig. 8. (a) The loopback reference chirp signal (b) the chirp signal received
by one of the microphones

varied linearly from 5 kHz to 10 kHz. The initial and the
final frequency was chosen to lie in the common passband of
the microphone and the speaker frequency response. The chirp
signal send by the speaker is convolved with the room impulse
response resulting in the spreading of the chirp signal. Figure
8(a) shows the chirp signal as sent out by the soundcard to the
speaker. This signal is recorded by looping the output channel
directly back to an input channel, on a multichannel sound
card. The initial delay is due to the emission start time and
the capture start time. Figure 8(b) shows the corresponding
chirp signal received by the microphone. The chirp signal is
delayed by a certain amount due to the propagation path. The
distortion and the spreadout is due to the speaker, microphone
and room response.

B. Time Delay Estimation

This is the most crucial part of the algorithm and also a
potential source of error. Hence lot of care has to be taken to
get the TOF accurately in noisy and reverberant environments.
The time-delay may be found by locating the peak in the cross-
correlation of the signals received over the two microphones.
However this method is not robust to noise and reverberations.
Knapp and Carter [11] developed a ML estimator for deter-
mining the time delay between signals received at two spatially
separated sensors in the presence of uncorrelated noise. In this
method, the delay estimate is the time lag which maximizes
the cross-correlation between filtered versions of the received
signals [11]. The cross-correlation of the filtered versions of
the signals is called as the Generalized Cross Correlation

(GCC) function. The GCC functionRx1x2(τ) is computed
as [11] Rx1x2(τ) =

∫∞
−∞W (ω)X1(ω)X∗

2 (ω)ejωτdω, where
X1(ω), X2(ω) are the Fourier transforms of the microphone
signalsx1(t), x2(t), respectively andW (ω) is the weighting
function. The two most commonly using weighting functions
are the ML and the Phase Transform (PHAT) weighting.
The ML weighting function, accentuates the signal passed
to the correlator at frequencies for which the signal-to-noise
ratio is the highest and, simultaneously suppresses the noise
power [11]. This ML weighting function performs well for
low room reverberation. As the room reverberation increases
this method shows severe performance degradations. Since the
spectral characteristics of the received signal are modified by
the multipath propagation in a room, the GCC function is
made more robust by deemphasizing the frequency dependent
weightings. The Phase Transform is one extreme where the
magnitude spectrum is flattened. The PHAT weighting is
given by WPHAT (ω) = 1

|X1(ω)X∗
2 (ω)| . By flattening out the

magnitude spectrum the resulting peak in the GCC function
corresponds to the dominant delay. However, the disadvantage
of the PHAT weighting is that it places equal emphasizes on
both the low and high SNR regions, and hence it works well
only when the noise level is low. For low noise rooms the
PHAT method performs moderately well.

C. Testbed Setup and Results

The algorithm has been tested in a real time distributed setup
using 5 laptops (IBM T-series Thinkpads with Intel Pentium
series processors). Figure 9(a) shows our experimental setup.
The room also had multiple PCs which acted as a noise
sources. All the five laptops were placed on a flat table so that
we can form a 2D coordinate system9. The ground truth was
measured manually to validate the results from the position
calibration methods. For our experiments we used the internal
microphones and speakers in the laptop.

9As discussed earlier we need minimum six laptops for the minimization
routine. With 5 laptops we need to know the actual x-coordinate of one of
the laptops.
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Fig. 9. (a) Our experimental setup (b) Results for a setup consisting of 5
laptops each having one internal microphone and speaker.

Capture and play back was done using the free, cross
platform, open-source, audio I/O library Portaudio [18]. Most
of the signal processing tasks were implemented using the Intel
Integrated Performance Primitives (IPP) For the non-linear
minimization we used themrqmin routine from Numerical
Recipes in C [14]. For the distributed platform we used the
Universal Plug and Play (UPnP) [19] technology to form an
adhoc network and control the audio devices on different
platforms. UPnP technology is a distributed, open networking
architecture that employs TCP/IP and other Internet technolo-
gies to enable seamless proximity networking [19]. Each of
the laptops has an UPnP service running for playing the chirp
signal and capturing the audio stream. A program on the
master scans the network for all the available UPnP players.
First the master starts the audio capture on each of the laptops
one by one. Then the chirp signal is played on each of the
devices one after the other and the signal is captured. The
TOF computation is distributed among all the laptops, in that
each laptop computes its own TOF and reports it back to the
master. The master performs the minimization routine once it
has the TOF matrix. For the setup consisting of 5 microphones
and 5 speakers, Figure 9 shows the estimated positions of
the microphones and speakers using both the methods. The
locations as got from the closed form approximate solution
are shown as ’*’. The localization error for each microphone
or speaker is defined as the euclidean distance between the
actual and the estimated positions. For our setup the average

localization error was 8.2 cm. We also implemented the same
system on a synchronized platform for which the error was
3.8 cm. Our algorithm assumed that the sampling rate was
known for each laptop and the clock does not drift. However in
practice the sampling rate is not as specified and the clock can
also drift. Hence our real time setup integrates the distributed
synchronization scheme using ML sequence as proposed in
[1]. This scheme essentially gives the exact sampling rate on
each of the GPCs.

VII. C ONCLUSIONS

In this paper we described the problem of position calibra-
tion of acoustic sensors and actuators in a network of dis-
tributed general-purpose computing platforms. Our approach
allows putting laptops, PDAs and tablets into a common 3D
coordinate system. Together with time synchronization this
creates arrays of audio sensors and actuators enabling a rich
set of new multistream A/V applications on platforms that
are available virtually anywhere. We also derived important
bounds on performance of spatial localization algorithms,
proposed optimization techniques to implement them and
extensively validated the algorithms on simulated and real
data.

APPENDIX I
CONVERTING THE DISTANCE MATRIX TO A DOT PRODUCT

MATRIX

Let us say we choose thekth GPC as the origin of
our coordinate system. Letdij and bij be the distance and
dotproduct respectively, between theith and thejth GPC.
Referring to Figure 10, using the cosine law,

d2
ij = d2

ki + d2
kj − 2dkidkjcos(α) (32)

The dot productbij is defined as

bij = dkidkjcos(α) (33)

Combining the above two equations,

bij =
1
2
(d2

ki + d2
kj − d2

ij) (34)

However this is with respect to thekth GPC as the origin of
the coordinate system. We need to get the dot product matrix
with the centroid as the origin. LetB be the dot product matrix
with respect to thekth GPC as the origin and letB∗ be the
dot product matrix with the centroid of the data points as the
origin. Let X∗ be to matrix of coordinates with the origin
shifted to the centroid.

X∗ = X − 1
N

1N×NX (35)

where1N×N is an N × N matrix who’s all elements are 1.
So nowB∗ can be written in terms ofB as follows:

B∗ = X∗X∗T

= B − 1
N

B1N×N − 1
N

1N×NB +
1

N2
1N×NB1N×N
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Hence theijth element inB∗ is given by

b∗ij = bij − 1
N

N∑

l=1

bil − 1
N

N∑
m=1

bmj +
1

N2

N∑
o=1

N∑
p=1

bop (36)

Substituting Equation 34 we get

b∗ij = −1
2

[
d2

ij −
1
N

N∑

l=1

d2
il −

1
N

N∑
m=1

d2
mj +

1
N2

N∑
o=1

N∑
p=1

d2
op

]

(37)
This operation is also known as double centering i.e. subtract
the row and the column means from its elements and add the
grand mean and then multiply by− 1

2 .

APPENDIX II
DERIVATIVES

Following are the derivable which are needed for the mini-
mization routine and the Cramer-Rao bound. These derivatives
form the non-zero elements of the Jacobian matrix.

∂ ˆTDOF
actual

ikj

∂mxi
=

mxi − sxj

c‖mi − sj‖
∂ ˆTDOF

actual

ikj

∂mxk
= − mxk − sxj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂myi
=

myi − syj

c‖mi − sj‖
∂ ˆTDOF

actual

ikj

∂myk
= − myk − syj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂mzi
=

mzi − szj

c‖mi − sj‖
∂ ˆTDOF

actual

ikj

∂mzk
= − mzk − szj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂sxj
= − mxi − sxj

c‖mi − sj‖ +
mxk − sxj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂syj
= − myi − syj

c‖mi − sj‖ +
myk − syj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂szj
= − mzi − szj

c‖mi − sj‖ +
mzk − szj

c‖mk − sj‖
∂ ˆTDOF

actual

ikj

∂tmk
= −∂ ˆTDOF

actual

ikj

∂tmi
= 1 (38)

∂ ˆTOF
actual

ij

∂mxi
= −∂ ˆTOF

actual

ij

∂sxj
=

mxi − sxj

c‖mi − sj‖
∂ ˆTOF

actual

ij

∂myi
= −∂ ˆTOF

actual

ij

∂syj
=

myi − syj

c‖mi − sj‖
∂ ˆTOF

actual

ij

∂mzi
= −∂ ˆTOF

actual

ij

∂szj
=

mzi − szj

c‖mi − sj‖
∂ ˆTOF

actual

ij

∂tsj
= −∂ ˆTOF

actual

ij

∂tmi
= 1 (39)
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