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Position Calibration of Microphones and
Loudspeakers in Distributed Computing Platforms

Vikas C. Raykat, Igor Kozintsev and Rainer Lienhart

Abstract—In this paper we present a novel algorithm to
automatically determine the relative 3D positions of audio sensors
and actuators in an ad-hoc distributed network of heterogeneous
general purpose computing platforms such as laptops, PDAs anc
tablets. A closed form approximate solution is derived, which
is further refined by minimizing a non-linear error function.
Our formulation and solution accounts for the lack of temporal
synchronization among different platforms. We compare two
different estimators, one based on the Time Of Flight (TOF)
and the other based on Time Difference Of Flight (TDOF).
We also derive an approximate expression for the mean anc
covariance of the implicitly defined estimator using the implicit
function theorem and approximate Taylors’' series expansion.
The theoretical performance limits for the sensor positions are
derived via the Cramér-Rao bound and analyzed with respect to
the number of sensors and actuators as well as their geometry
We report extensive simulation results and discuss the practical
details of implementing our algorithms in a real-life system. Fig. 1. Distributed computing platform consisting &f general-purpose
computers along with their onboard audio sensors, actuators and wireless
communication capabilities.

Index Terms—Multi-channel signal processing for audio
and acoustics applications, Microphone array calibration, Self-
localizing sensor networks, Self-position calibration, Multidimen-
sional scaling, Cranér-Rao bound.

meeting recordings, automatic lecture summarization, hands-

free voice communication, object localization, and speech
I. INTRODUCTION AND MOTIVATION enhancement. The advantage of such an approach is that

o multiple GPCs along with their sensors and actuators can be
A RRAYS of audio/video sensors and a(_:tuators (such ESnverted to a distributed sensor network in an ad-hoc fashion

: . ; o : _ﬁﬂ"frastructure in terms of the sensors, actuators, multi-channel
emerging multimedia applications. Until now, array processingiarface cards and computing power is required. However,
was mostly out of reach for consumer applications perhags, e are several important technical and theoretical problems
due to S|gr_1|f|cant cost of dedicated hard_ware and complexiiyat need to be addressed before the idea of using GPCs for
of processing algorithms. At the same time, recent advancgs,y signal processing algorithms can materialize in real-life
in mobile computing and communication technologies suggegiyjications. A prerequisite for using distributed audio-visual
a very attractive platform for implementing these algorithmgyg capaniiities is to put sensors and actuators into a common
Students in classrooms, co-workers at meetings, family mefe and space (coordinate system). In [1] we proposed a way
bers_ at home are nowadays ac_compamed_ by one or SeVgldhrovide a common time reference for multiple distributed
mobile computing and communication dewces like IapFOPéPCS with the precision of ten’s of microseconds. In this paper
PDAs, tablets, with multiple audio and video /O device§,q tqcus on providing a common space (relative coordinate
onboard. We collectively refer to such devices as Gene@giom) by means of actively estimating the three dimensional
Purpose Computers (GPCs). An ad-hoc network of GPCs Galkitions of the sensors and actuators. Many multi-microphone
be used to capture/render different audio-visual scenes in, @,y hrocessing algorithms (like sound source localization or
distributed fashion leading to _nov_el emerging appl_'cat'onﬁonventional beamforming) need to know the positions of the
A few examples of such applications include multi-strea;ronhones very precisely. Even relatively small uncertainties
audio/video rendering, smart audio/video conference rooms, cansor location could make substantial, often dominant,
_ o . contributions to overall localization error [2].
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with audio sensors (microphones), actuators (speakers) fos Most of the existing localization methods use the Time

performing audio I/O, and wireless communication capabilities  Of Flight (TOF) approach for position calibration [3], [6],

for exchanging data between each other. [8]. We show that for distributed computing platforms,
the method based on Time Difference of Flight (TDOF)
is better than the TOF method in many respects.

« We derive the approximate mean and covariance of the
Current audio array processing systems either rely on plac- implicitly defined estimator using the implicit function
ing the microphones in known locations or manual calibration  theorem and Taylor series expansion as in [10]. We also
of their positions. There are some approaches which do derive the Cramr-Rao bound and analyze the localization

position calibration using speakers in known locations. [3] accuracy with respect to the number of sensors and sensor
describes an experimental setup for automatic calibration of geometry.

a large-aperture microphone array using acoustic signals from
transducers whose locations are known. We follow a mo
general approach where we assume that the speakers location
are also unknown. A lot of related theoretical work can be The rest of the paper is organized as follows. In Section II,
found in [2], [4], [5]. Most of the formulations assume thatve formulate the problem and derive the Maximum Likelihood
all the sensors and actuators are on a synchronized seMp) estimator. We derive two estimators, one based on TOF
i.e capture and playback occur simultaneously. However @d the other based on TDOF. In Section Ill we derive an
a typical distributed setup we start the audio capture aA@proximate closed form solution, which can be used as an
playback on each GPC one by one and the playback dpdial guess for the non-linear minimization routine. In Section
the capture start time are generally unknown. Our solutidd we derive the theoretical mean and covariance of the
explicitly accounts for the errors in localization due to lack oestimated parameters. The CknRao bound is derived and
temporal synchronization among different platforms. A recegfalyzed for its sensitivity with respect to the number of
paper [6] accounts only for the unknown source emission tinfg€nsors and actuators as well as their geometry. In Section
The solution turns out to be a non-linear minimization probleM. extensive simulation results are reported. Section VI gives
which requires a good Starting point to reach the g|0b§| discussion of the issues involved in designing a praCtical
minimum. We derive a closed form approximate solution to B&/stem. Section VII, concludes with a summary of the present
used as initial guess for the minimization routine. The probleWork, and with a discussion on possible extensions.

of self-localization for a network of nodes has also been dealt

in the wireless network and robotics community [6]-[8]. The Il. PROBLEM FORMULATION

problem is essentially the same as in our case but the rangin%iven a set ofM acoustic sensors (microphones) afid

method differ depending on the sensors and actuators. 4.6, stic actuators (speakers) in unknown locations, our goal

is to estimate their three dimensional coordinates. We assume

B. Contributions that each of the GPCs has at least one microphone and one

. oo . speaker. We also assume that at any given instant we know the
The following are the novel contributions of this paper. .

number of sensors and actuators in the network. Any new node

« We propose a novel setup for array processing algorithiagtering/departing the network announces its arrival/departure

with ad-hoc connected GPCs. by some means, so that the network of sensors and actuators
« The position estimation problem has been derived ascgn pe recalibrated.
maximum likelihood in several papers [3], [4], [6]. The Each of the speaker is excited using a known calibration
solution turns out to be the minimum of a nonlineagignal such as maximum length sequence or chirp signal and
cost function. Iterative nonlinear least square optimizatigfe signal is captured by each of the acoustic sensors. The
procedures require a very close initial guess to converggne of Flight (TOF) is estimated from the captured audio
to a global maximum. We propose the technique of metrigynal. The TOF for a given pair of microphone and speaker
Multidimensional Scaling (MDS) [9] in order to get anjs gefined as the time taken by the acoustic signal to travel
initial guess for the nonlinear minimization probleMsom the speaker to the microphdneVe assume that the
Using this technique, we get the approximate positioRgynals emitted from each of the speakers do not interfere
of GPCs. _ N o with each other i.e. each signal can be associated with a
« Most of the previous work on position calibration (excep§articular speaker. This can be achieved by confining the signal
[8] which describes a setup based on Compaq iPAQ@$ each speaker to disjoint frequency bands or time intervals.
and motes) are formulated assuming time synchronizggternately, we can use coded sequences such that the signal
platforms. However in an ad-hoc distributed computingue to each speaker can be extracted at the microphones
platform consisting of heterogeneous GPCs we need 4Qq correctly attributed to the corresponding speaker. The
explicitly account for errors due to lack of temporal synyrg TOF measurements constitute our observations, based

chronization. We perform an analysis of the localizatiog, which we have to estimate the microphone and speaker
errors due to lack of synchronization among multiplgositions.

platforms and propose ways to account for the unknown
emission start times and capture start times. 1In some papers, TOF is referred to as Time Of Arrival (TOA).

A. Previous work

SOrganization
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Let m; for ¢ € [1,M] ands; for j € [1,S] be the three S
dimensional vectors representing the spatial coordinates o~ [ '€ ©n9n
it" microphone andj* speaker, respectively. We excite ol ts
of the S speakers at a time and measure the TOF at eac
the M microphones. Le"OF}:**! be the actual TOF for
the i'” microphone due to thg'" source. Based on geomet
the actual TOF can be written as (assuming a direct path

Signal Emitted by source ]

—-————

—» Playback Started t
] ;

! ! Signal Received by microphonei
> Capture Started
1

on the signal captured confirms to this model only when
the sensors start capturing at the same instant and we |
when the calibration signal was sent from the speaker. Th
genera”y the case When we use mu|t|channe| Sound Cardflﬁb 2. Schematic indicating the unknown emission and capture start time.
interface multiple microphones and speakérs

However in a typical distributed setup of GPCs as shown EPC one by one. We define the microphone on which the

Figure 1, the master starts the audio capture and playback on,. ; . .
audio capture was started first as our first microphone. In
each of the GPCs one by one. As a result the capture starts at__. . . . )
ractice, we setm; = 0 i.e. the time at which the first

different instants on each GPC and also the time at which the T g ,
S ) . m&crophone started capturing is our origin. We define all other
calibration signal was emitted from each loud speaker are q{o

known. As a result, the TOF which we measure includes bo |ﬁnes with re;pect o this origin. .
C . . If two audio input and output channels are available on a
the speaker emission start time and the microphone capture

: : A . single GPC then one of the output channels can be used to
start time (See Figure 2 W.he@OF” is what we measure play a reference signal which is RF modulated and transmitted
andTOF;; is what we require).

o . : ' . through the air [1]. This reference signal can be captured in
The speaker emission start time is defined as the time . .
one of the input channels, demodulated and used to estimate

at which the sound is actually emitted from the speak%l — tmy, since the transmission time for RF waves can be
(2]

This includes the time when the play back command was’ . ) .
. . : - considered almost zero. Note that this assumes that all audio
issued (with reference to some time origin), the network del& : . o

annels on the same 1/O device are synchronized, which is

involved in starting the playback on a different machine (if the nerally true. However this method requires more hardware

. . . : e
speaker is on a different GPC), the delay in setting up the au&o S
P . ). y gup in terms of RF modulators/demodulators. The other solution is
buffers and also the time required for the speaker diaphragm fo. . . o
L - L 0 jointly estimate the unknown source emission and capture

start vibrating. The emission start time is generally unknoer

and depends on the particular sound card, speaker and :% aert time along with the microphone and source coordinates.

system state such as the processor workload, interrupts, and._. . .

tﬁ/e processes scheduled ar:-[J the given instant. The mic‘r)oph%ﬁgﬂme Difference Of Flight

capture start time is defined as the time instant at whichIn this paper we propose to use the Time Difference Of

capture is started. This includes the time when the captdright instead of the TOF. The TDOF for a given pair of

command was issued, the network delay involved in startifigicrophones and a speaker is defined as the time difference

the capture on a different machine and the delay in transferripgtween the signal received by the two microphofieket

the captured sample from the sound card to the buffers. TDOFg:{""*¢ be the estimated TDOF between th¢
Letts; be the emission start time for th&" source andm,; and thek' microphone when thg"" source is excited. Let

be the capture start time for th& microphone with respect to TDOF}“*" be the actual TDOF. It is given by

some origin (see Figure 2). Incorporating these two the actual

e e g R

TOFiqctual _ H m; —§;j || (1) ] !
J c | tm ! TOF i
where ¢ the speed of sound in the acoustical meditiand -
|l is the Euclidean norm. The TOF, which we estimate ba ' TOF, t

TOF now becomes, TDOFj = [mi =85 | = e =s; | (3)
(&
2 tual 1 . .. . .
TOF; " = TOF&™! 1 ts; — tm, Including the source emission and capture start times, it
| mj —s; | becomes
:7+t$j—tmi (2) R ) L. _ .
c DO [ m; —s; || — [ my —s; || by — tm,
.. . . ~ _actual J c
The origin can be arbitrary sincEOF,; depends on the 4)

difference ofts; and¢m,;. We start the audio capture on eachin the case of TDOF the source emission time is the same for

) _ _ _ o both microphones and thus gets cancelled out. Therefore, by
The speed of sound in a given acoustical medium is assumed to be. . f TOF d th
constant. In air it is given by = (331 + 0.6T)m/s, where T is the using TDOF measurements mSt.ead 0 we can reduce the
temperature of the medium in celsius degrees. number of parameters to be estimated.
3For multichannel sound cards all the channels are synchronized and the
time when the calibration signal was sent can be determined by doing a looGiven M microphones and speakers we can havd S(M —1)/2 TDOF
back from the output to the input. This loopback signal can be used asnaasurements as opposedthS TOF measurements. Of theddS(M —
reference to estimate the TOF. 1)/2 TDOF measurements onfy\/ — 1).S are linearly independent.
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B. Maximum Likelihood Estimate that the first is at(0,0,0), the second afz;,0,0), and the

Assuming an additive Gaussfanoise model for the TDOF third at(z2, 42, 0). Basically we are fixing a plane so that the
observations we can derive the Maximum Likelihood estimaf€nsor configuration cannot be translated or rotated. In two
as follows. Let®, be a vector of lengttP x 1, representing dimensions we select two nodes to lie on a line, the first at
all the unknown non-random parameters to be estimatéd0) and the second atry,0). To eliminate the ambiguity
(microphone and speaker coordinates and microphone capfif§ to reflection along the Z-axis (or Y-axis in 2D) we specify
start times). Lef, be a vector of lengthV x 1, representing ©N€ more node to lie in the positive Z-axis _(or positive _Y-aX|s
noisy TDOF measurements. L&(0), be a vector of length I 2D). Also the_reﬂectlons along the X-axis and Y_-aX|s (fo_r
N x 1, representing the actual value of the observations. ThaR) can be eliminated by assuming the nodes, which we fix,
our model for the observations & = T(©) + n wherey is to lie on the positive side of the respective axes, i.£> 0
the zero-mean additive white Gaussian noise vector of lengtRdv2 > 0. _ _ _
N x 1 where each element has the variamj?e Also let us Since the TDOF and TOF depends on time differences (i.e.
defineX: to be theN x N covariance matrix of the noise vectort; — tm: in case of TOF andm; — tm; in case of TDOF)

1. The likelihood function off” in vector form can be written there are multiple global minima due to shifts in the time axis.
as: Similar to fixing a reference coordinate system in space we

1 introduce a reference time line by settingr, = 0. This is
p(T'/O) = (27r)*% |2 |*% exp ——(I-T)TS"1(T-T) (5) needed since we are estimating the absolute source emission

2 and capture start tim&sNote we are only interested in the
The log-likelihood function is given by positions of the microphones and speakers. The emission and

N 1 1 capture times are just nuisance parameters.
Inp(l'/O) = _Ehl(%)_il" | 2| —Q(F—T)TZ*l(F—T) P : P

(6) .
The ML estimate of© is the one which maximizes the IogD' Non-Linear Least Squares
likelihood ratio and is given by The ML estimate for the node coordinates of the micro-
. phones and speakers is implicitly defined as the minimum of
OnL = arge max F(O,T) the non-linear function defined in Equation 8. This function
F(O,T) = f%[FfT(G))]TE*[FfT(@)] @) has to be minimized using numerical optimizqtion meth-
ods. Least squares problems can be solved using a general

Assuming that that each of the TDOFs are independentiypconstrained minimization. However there exist specialized
corrupted by zero-mean additive white Gaussian noise mwiethods like the Gauss-Newton and the Levenberg-Marquardt
variance o7 ; the ML estimate becomes a nonlinear leashethod which are often more efficient in practice. The
squares problem (in this cadgis a diagonal matrix), i.e. Levenberg-Marquardt method [12] is a popular method for

solving non-linear least squares problems. For more details on

Onmr = arge miE[FTDOF(ev )] nonlinear minimization refer to [13]. Appendix Il gives the non

Frpor(©,T') = zero partial derivatives needed for the minimization routines
S .M M (TDOFgtimated _ DO F?}::‘W‘)z The common prqblem with mi'ni'mization mgthqu is that they
SN J . : (8) often get stuck in a local minima. Good initial guesses of
j=1i=1 k=i+1 Tikj the node locations counteract the problem. In Section IIl we

Tn case of TOF measurements the ML estimate can be deri\?eedive an approximate closed form solution which can be used
as above and is given by, to Initialize the minimization routine.

Oy = arge min[Frop(0,T))]

‘ Frorp(©,1) = Non-linear least squares optimization requires that the to-
M (TOFgstimated — TQFactual)2 tal number of observations is greater than or equal to the
Z o2 ©) total number of parameters to be estimated. This imposes
b=t v a minimum number of microphones and speakers required
In this case© also includes the speaker emission start timefor the position estimation method to work. Assuming we
have M microphones andS speakers Table | summarizes
C. Reference Coordinate System the number of independent observation$) @nd the number

. L . of parameters to be estimatef)(in each of the estimation
Since the TOF and TDOF depends on pairwise dlstanc%

E. Minimum number of microphones and speakers required

S

J

. . X ) Yocedures. In case of the TDOF based method 6hly1 out
any translation and rotation of the coordinate system, will al M(M —1)/2 pair of TDOF measurements for each speaker
be a global minimum. In order to eliminate multiple global

minima we select three arbitrary nodes to lie in a plane suchv; we are estimating the difference then we do not need a time ref-
erence. However estimating the difference introduces a lot of unnecessary
5We estimate the TDOF or TOF using Generalized Cross Correlation (GC@jrametersp(N2) parameters instead @ (N) parameters).
[11]. The estimated TDOF or TOF is corrupted due to ambient noise and roonYMany commercial software solutions are available for the Levenberg-
reverberation. For high SNR the delays estimated by the GCC can be shdMerquardt method such asgnonlin in MATLAB, mrgmin provided by
to be normally distributed with zero mean. [11]. Numerical Recipes in C [14] , and the MINPACK-1 routines [15]



TABLE |
TOTAL NUMBER OF INDEPENDENT OBSERVATION$/N) AND PARAMETERS
TO BE ESTIMATED(P) FOR DIFFERENT ESTIMATION PROCEDURESM = TOF“- ~~ ts; —tm;
NUMBER OF MICROPHONES S = NUMBER OF SPEAKERS D = DIMENSION A
s S TOFjj ~ tSj — tmj

Substituting we have the following equations:

N P TOF” = TOF” + tSj —tm;
TOFji ~ TOFZ‘J‘ +ts; — tmy; (12)
TOF MS DM + DS — 2L0FD
Position From the above equations we can solve T@F;; as:
TDOF | (M —1)S DM + DS — 2B+1) TOF;; ~ (TOFi; + TOF;:) ; (TOFi; + TOFy;) (13)
Position
Also we can solve for the microphone capture start time and
TQF MS (D+1)M + (D +1)S — w 1 the source emission start time as follows:
Joint ts; ~ TOF;; + tm;
TDOF | (M —1)S (D+1)M + DS — PO+ 4 tm; ~ (TOFi; — TOFj) ‘g (TOF;; — TOF jj) + tm; (14)
Joint
Considering the time when the capture on the first microphone
is started as zero ( i.é¢m; = 0 ), we can solve for all the
TABLE I other microphone capture start times and the speaker emission
MINIMUM VALUE OF MICROPHONESPEAKER PAIRS (K') REQUIRED FOR  start times. Note that all the above equations are true only
DIFFERENT ESTIMATION PROCEDURED=DIMENSION) approximately. Their values have to be refined further using
the ML estimation procedure.
K> D=2 | D=3
TOF Position Estimation 3 5
TDOF Position Estimationl 5 6 B. Initial Guess for microphone and speaker positions
TOF Joint Estimation 6 7 Given the pairwise Euclidean distances betwéémodes
TDOF Joint Estimation 6 7 their relative positions can be determined by means of metric

Multidimensional Scaling (MDS) [9]. MDS is popular in
psychology and denotes a set of data-analysis techniques for
are linearly independent. Assumidg=S=K, the Table Il lists the analysis of proximity data on a set of stimuli for revealing
the minimumK required for least squares fitting. the hidden structure underlying the data [16]. The proximity
data refers to some measure of pairwise dissimilarity. Given a
set of N stimuli along with their pairwise dissimilaritieg;;,
MDS places theN stimuli as points in a multidimensional

In this section we make some approximations to get closgface, such that the distances between any two points are a

form solutions to the microphone and speaker positions afPnotonic function of the corresponding dissimilarity. MDS is
the capture start times. widely used to visually study the structure in proximity data.

If proximity data are based on the Euclidean distances, then
classical metric MDS [9] can exactly recreate the configura-
A. Initial Guess for capture and emission start times tion. Given a set ofV GPCs, letX be aN x 3 matrix where
each row represents the 3D coordinates of each GPC. Then
the NV x N matrix B = X X7 is called the dot product matrix.
SIggledefinition,B is a symmetric positive definite matrix, so the
rank of B (i.e the number of positive eigen values) is equal to
the dimension of the datapoints i.e. 3 in this case. Also based
TOF;; = TOF;; + ts; — tm; on the rank of B we can find whether the GPCs are on a
A plane or distributed in 3D. Starting with a mattx (possibly
TqFjj =TOF;; +1ts; —tm; corrupted by noise), it is possible to factor it to get the matrix
TOF;j = TOF;; +ts; —tm; of coordinatesX. One method to factoB is to use singular
TOFN =TOF}; +ts; — tm; (10) value decomposition (SVD) [14], i.eB = UXUT whereX
is a N x N diagonal matrix of singular values. The diagonal
Assuming sufficient closeness between the microphone agldments are arranged as > sy > s, > 5,41 = ..... =
speaker on the same laptop compared to the distance between= 0, wherer is the rank of the matrix3. The columns
two laptops, the following approximations can be made. of U are the corresponding singular vectors. We can write
X' = UXY2, From X' we can take the first three columns
TOF;; = TOF;; =0 to get X. If the elements ofB are exact (i.e., they are not
TOF;j; =~ TOFy; (11) corrupted by noise), then all the other columns are zero. It

[11. CLOSEDFORM APPROXIMATE SOLUTION

Consider two laptops andj each having one microphone
and one speaker. For these two laptops we can mea
TOF;;, TOF;;, TOF;; and TOF;;. Assuming no noise
these are related to the actdaD F' as follows:
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can be shown that SVD factorization minimizes the matrix 4
norm|| B — XX7T |. a5k 8 |
In practice, we can estimate the distance mafvixwhere

the ij*" element is the Euclidean distance between e 3r : : /e 1

and thej** GPC. This distance matri® must be converted sl |

into a dot product matrix3 before MDS can be applied. We g

need to choose some point as the origin of our coordinatcg 2r R & X Actual

system in order to form the dot product matrix. Any point g @? 2 fj;';“ated

can be selected as the origin, but Togerson [9] recommenc > Lor @f’ KL

the centroid of all the points. If the distances have randonr 1} :

errors then choosing the centroid as the origin will minimize

the errors as they tend to cancel each other. We can obta °f p

the dot product matrix using the cosine law which relates the (%8’ ‘ ‘ gg ‘ ‘ ‘ %
0.5 1 1. 2 2.5 3 35 4

distance between two vectors to their lengths and the cosin
of the angle between them. Refer to Appendix | for a detailed
derivation of how to convert the distance matrix to the scal@ly. 3. Results of Multidimensional Scaling for a network consisting of 10
product matrix. GPCs each having one microphone and one speaker.

1) Multidimensional Scaling with clusteringtn our case
of M microphones andS speakers we cannot use MDS

X coordinate(m)

directly because we cannot measure all the pairwise distances. — !f 2D select two nodes: The first one as the origin,
We can measure the distance between each speaker and all (e second to define the x-axis. Also select a third
the microphones. However we cannot measure the distance node to represent the positive y-axis.
between two microphones or two speakers. In order to applye STEP 4
MDS, we cluster microphones and speakers, which are close - Get the approximate positions of the GPCs using
together. Based on the approximation discussed in the previous metric Multidimensional Scaling (SVD @f).
section, the distancé;; between the'" and ;" GPC is given — Translate, rotate and mirror the coordinates to the
by coordinate system specified in STEP 3.
A Ae AT A — Slightly perturb the coordinates to get approximate
dij =~ c(TOFy; + TOFﬁz TOF; —TOF;) (15) initial guess for the microphone and speaker coor-
dinates.

wherec is the speed of the sound. D .
The position F(;stimate from MDS is arbitrary with respect * ST_EP = Minimize both the TDOF based error functpn
to the centroid and the orientation and is converted into the YS!N9 the Levenberg-Marquardat method to get the final
reference coordinate system described in Section II-C. The posmor_ls . the_ .mlcrophones and speaker_s. Use the
approximate locations of the GPCs are slightly perturbed to gpproxmate positions and the capture start times as the

get the initial guess for the microphone and speaker locations. initial guess.
The following table summarizes the complete algorithm:

Figure 3 shows an example with 10 laptops each having

ALGORITHM one microphone and one speaker. The actual locations of
the sensors and actuators are shown as 'X'. The '*'s are the
Say we havél/ microphones and speakers approximate GPC locations as determined by MDS. As can
« STEP 1 Measure theM x S Time Of Flight ¢OF) be seen the MDS results are very close to the microphone
matrix. and speaker locations. The estimated locations are further

e« STEP 2 improved in STEP 3 and marked as '0’s.

— Form the approximate distance matriX. (Equation
15) V. ESTIMATOR BIAS AND VARIANCE

— Assumem, = 0 (microphone on which capture was The ML estimate for the microphone and speaker positions
started first) and get the approximate microphong gefined implicitly as the minimum of a certain error func-
capture and speaker emission start times. (Equatiqyn. Hence it is not possible to get exact analytical expressions
14) for the mean and the variance. However by using the implicit

— Convert the distance matri¥) to the dot product fynction theorem and the Taylors' series it is possible to
matrix B (Appendix I). Find the rank ofB t0 gerive approximate expressions for the mean and variance of
determine whether the GPCs are in 2D or 3D.  mpjicitly defined estimators [10]. In this section we derive the

« STEP 3 Form a reference coordinate system approximate expressions for both the mean and variance of the

— If 3D select three nodes: The first one as the origirgstimators. We follow the same approach as in [10]. The ML
the second to define the x-axis and the third to formstimate of® is the one which maximizes the log likelihood
the xy-plane. Also select a fourth node to represerdtio and is given by Equation 7. In further derivation we need
the positive z-axis. the first and second derivatives of Equation 7 with respect to



© andT'. Using the generalized chain rule it can be showt 10°
that for Equation 7 the vector derivatives are as follows o |
VoF(O,T)=J'Y"YT' - T)
VrF(O,T)="1(T-1T)
VeVeF(0,T)=-JTs"1J
VrVrF(O,T) =%
VrVeF(0,T)=%"1J

VeVrF(O©,T) = —Jrx"! (16)

107

- -O@  TOF based Position Estimation
s -% = TDOA based Position Estimation
e —&- TOF based Joint Estimation
—A- TDOA based Joint Estimation(120 pairs)
—<— TDOA based Joint Estimation(16 pairs)

T T T

where J is a N x P matrix of partial derivatives ofl'(©)
called theJacobianof T'(0).

Total Variance of the microphone coordinates (nf)

‘
- "’ 10°° 107° 107 10°°

[J] R atz (6) (17) 10 10 TOF Noise Standard Deviation (o)
1] —

00,
J
) o o Fig. 4. Crangr-Rao bound on the total variance of the unknown microphone
Refer to Appendix Il for the individual derivatives of thecoordinates as a function of TOF noise standard deviatiofor different
Jacobianmatrix. estimation procedures. For the TDOF- based method the noise variance was
taken as twice that of the TOF variance. The network had a total of 16
microphones and 16 speakers.

A. Estimator Covariance

The ML estimate 0® is the one which maximizes the logB. Estimator Mean
likelihood ratio defined in Equation 7. The maximum can be

. ) e . Taking the expectation of the first order Taylor series
found by setting the first derivative to zero i.e. g P y

expansion in Equation 20
Vol (6,I) |g_o=0 (18) E(h(I)) = h(T'y) = h(T) (26)

where 0 is a zero column vector of lengtt?. The im- we see that the mean is the value given by the estimation
pl!c!t function theorem guarantees thgt Equation 18 inprocedure when applied to the actual noise free measurements
plicitly defines a vector valued functio® = K(I') = T.ltis also possible to get the mean using the second order
[71(T), ha(T), ..., hp(T)]" that maps the observation vectorTaylor series expansion, but it involves third order derivatives
I to the parameter vectdd. Equation 18 can be written as and generally we cannot get simple form as in Equation 25.
Vo F(h(I),T) =0 (19) ]
C. Craner-Rao Bound
However it is not possible to find an analytical expression for The craner-Rao bound gives a lower bound on the variance
h(T). But we can approxim_ate the covariance using the firg any unbiased estimate [17]. It does not depend on the
order Taylor series expansion fo(T). Let I';, be the mean anicylar estimation method used. In this section, we derive
of I'. Then expanding(I") aroundl",, we get the Cranér-Rao bound (CRB) assuming our estimator is
W) ~ h(T,) + [Veh(D)T |p—p 1T =T 20 unbiased. The variance of any unbiased estimé&tmf © is
() = h(T'm) + [Veh(I)" [r=r,.]" ( m)  (20) bounded as [17]

whereVp = [2-, 52, .., 52-]7 is aN x 1 column gradient . . r .
operator. Takint the covariance on both sides yields E [(@ —0)(©-06)"| 2 F7(0) )
Cov(h(T)) = [Vrh(D)T |r_r., |7 Cov(D)[Vrh(T)T [r_r, ] (ZlyvhereF(@) is called the Fischer’s Information matrix and is

given by
Note we do not knowh(T"). Differentiating Equation 19 with T
respect tol’ and evaluating afF,, yields FO)=E {[V@D Inp(I'/O)] [Ve Inp(I'/O)] } (28)

V@V@F(h(Fm),Fm)[Vph(Fm)T]T £ VeVrF(h(Tm),Tm) :/bn timatfalwhich .satisfies the bour}d With an equality is
called’an efficient estimate. The ML estimate is consistent and

AssumingVeVe F(h(T'y,),T'yy,) is invertible we can write asymptotically efficient [17].
iy . The derivative of the log-likelihood function (see Equation
[Vrh(Tm)" ] = =[VeVeF(h(I'm),I'n)]” Ve Vr F(h(I'm),Ig) fdBbe found using the generalized chain rule and is given
by (refer Equation 16)

Volnp((T/0) =J'S T - 1) (29)

. _ . ) ) ) whereJ is theJacobian Substituting this in Equation 28 and
Using this in the covariance expression, we final armive at (aying the expectation the Fishers Information matrix is,

Cov® = [JTx~1J! (25) F=Jr's"1J (30)

Substituting from Equation 16 we get
[Vrh(Tp) )T = —[J7s g tgTe ! (24)



8 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING

Cov® > [JTx~1J)t (31) N
Note that this expression is the same as the approxims >°| i
covariance of the estimator derived in the previous section. ;| @Q @Q @ + i
If we assume that all the microphone and source locatior
are unknown, the Fisher Information matti¥ ¥ ~1.J is rank 250 )
deficient and hence not invertible. This is because the soluticg .| ﬁﬁ %, e, QO |

to the ML estimation problem as formulated is not invarian >~
to rotation and translation. In order to make the Fisher In 1s
formation matrix invertible we remove the rows and column: & 4 &
corresponding to the known parameters. i * &

The diagonal terms of JTX~1J]~! represent the error sl i
variance for estimating each of the parameter®.itn the next
few sections we explore the dependency of the error variant % Y 1 15
on different parameters. Figure 4 shows CeaRao bound
on the total variance of the unknown microphone coordinates @)
as a function of TOF noise standard deviatiorfior a sensor 4
network consisting of 16 microphones and 16 speakers, fi
different estimation procedurés e ® ® ® ® ®

3+ 4

D. Effect of nuisance parameters 25l @ © ® 0 0 |

The speaker emission start time and the microphone captt ~ o o 0 0 0
i . . .E of o 1 6 0 @ 7

start time can be considered as the nuisance parameters si >
we are interested only in the microphone and speaker coc 5| o & Wi P O i
dinates. The effect of the nuisance parameters on the &ran z g g g Y
Rao bound can be seen from Figure 4, where the total err i P p g Vi o )
variance in the microphone coordinates is plotted against tt ok x g 4 4 %) |
noise standard deviatianfor both normal position estimation
and joint position estimation. For both the TOF and TDOF o s - - . 1 : ‘_
approaches the joint estimation results in a higher varianc _ X (m)
which is due to the extra nuisance parameters. Among TOF (b)
and TDOF approaches TOF has more number of nl'IisanFCe 5. 95% uncertainty ellipses for a regular 2 dimensional array of (a)

R . . . o u i i u i i y
parameters and hencellt has a higher V‘T"r'ance .than the TD@%eakers and 9 microphones, (b) 25 speakers and 25 microphones. Noise
approach. Another point to be noted is that in the TDOVariance in both cases is? = 10~9 for the TOF-based method anc® =
approach we need not use all tl’ué(M— 1)/2 pairwise TDOF 2 x 1079 for the TDOF-based method. The microphones are represented as

ts. H d TDﬁ_r??ses %) and the speakers as dots (The position of one microphone and
measurements. However as we use more and more x coordinate of one speaker is assumed to be known (shown in bold).

measurements the variance decreases as can be seen in Figireolid and dotted ellipses are the uncertainty ellipses for the estimation
4. procedure using the TOF and TDOF-based method respectively.

E. Increasing the number of sensors and actuators

As the number of nodes increases in the network, the CRBNOISe variance of x 10~ was assumed for the TDOF-
on the covariance matrix decreases. The more microphof@sed method. Figure 5(b) shows the correspondisg
and speakers in the network, the smaller the error in estimdficertainty ellipses for a two dimensional array consisting
ing their positions. Figure 5(a) shows t96% uncertainty ©f 25 microphones and 25 speakers. It can be seen that
ellipses for a regular two dimensional array consisting of @ the number of sensors in the network increases the size
microphones and 9 speakers, for both the TOF and the TDGH-the uncertainty ellipses decreases. Intuitively this can be
based joint estimation procedures. We fixed the position ®¥Plained as follows: Let there be a total of nodes in
one microphone and the coordinate of one speaker. For thdhe network whose coordinates are unknown. Then we have
fixed speaker only the variance indirection is shown since t0 estimate a total oBrn parameters. The total number of
the = coordinate is fixed. For TOF-based method the noidéOF measurements available is howewgy4 (assuming that
variance was assumed to b in order to properly visualize there aren/2 microphones andn/2 speakers). So if the
the uncertainity ellipses. In order to give a fair comparisofUmber of unknown parameters increase®s), the number

of available measurements increases(%:?). The linear
8In order to do a fair comparison, the corresponding TDOF noise varianigcrease in the number of unknown parameters, is compen-

was approximated to be twice the corresponding TOF noise variance. In %‘&ted by the quadratic increase in the available measurements
TOF case only one signal was degraded due to noise and reverberation while. !

ich hat th ini k iable will
the other was the reference signal. In case of TDOF both the signals weaie suggests that the uncertainity per unknown variable wi
degraded. decrease.
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Fig. 6. 95% uncertainty ellipses for a regular 2 dimensional array of 25 microphones and 25 speakers for different positions of the known microphone and
for different x coordinates of the known speaker. In (a) and (b) the known nodes are close to each other and in (c) they are spread out one at each corner of
the grid. The microphones are represented as crosseand the speakers as dots (Noise variance in all cases wag = 10~7. (d) Schematic to explain

the shape of uncertainty ellipses. 50 TDOF pairs were used for the estimation procedure.

F. Sensor Geometry - How to select a coordinate system?a typical laptop. Based on the geometry of the setup the actual
In our formulation we assumed that we know the position-EOF between each speaker and microphones was calculated

of a certain number of nodes, i.e we fix three of the nodes #d then corrupted with zero mean additive white Gaussian
lie in the x-y plane. The CRB depends on which of the sensBPiS€ ©f variances” in order to model the room ambient
nodes are assumed to have known positions. Figure 6 shdi@iSe and reverberation. The TOF matrix was also corrupted
the 95% uncertainty ellipses for a regular two dimensiona?y Known systematic errors, i.e. a known microphone emission
array containing 25 microphones and 25 speakers for differ&fPture start time and speaker emission start time was gdded.
positions of the known nodes. In Figure 6(a) the two knowhne Levenberg-Marquardt method was used as the minimiza-

nodes are at one corer of the grid. It can be seen that {0 routine. For each noise varianeé, the results were

uncertainty ellipse becomes wider as you move away foryeraged over 2000 trials. Figure 7(a) and Figure 7(b) show the
the known nodes. The uncertainty in the direction tangentiQt@! variance and the total bias (sum of all the biases in each
to the line joining the sensor node and the center of the kno\ﬁﬂra}meter) of all the unknown microphone coordinates plotted

nodes is much larger than along the line. The same can ggainst the noise standard deviatiofor both the TOF and the

seen in Figure 6(b) where the known nodes are at the cenl&lOF-based approach. The results are shown both for position

of the grid. The reason for this can be explained for a Simp?étimation and the Joint position and start times estimation
case where we know the locations of two speakers as shoffgcedures. The Cram Rao bound for the TDOF-based

in Figure 6(d). Each circular band represents the uncertaidjt €stimation procedure is also shown. Since we corrupted
in the distance estimation. The intersection of the two ann{fle TOF with a systemat]c errors, the position estlmayon

corresponding to the two speakers gives the uncertainty regRjifcedure shows a very high variance and a correspondingly

for the position of the sensor. As can be seen for nodes f48h Pias. Hence when the TOFs are corrupted by systematic

away from the two speakers the region widens because of §{E°rS we need to do joint estimation of the positions as

decrease in the curvature. It is beneficial if the known nodd€!l @s the nuisance parameters. Even though theoretically the
are on the edges of the network and as far away from ea‘EROF—based joint estimation procedure has the least variance,
other as possible. In Figure 6(c) the known sensor nodes areee)(Rerlmentally all the joint _estlmayon procedures show«_ad

the edges of the network. As can be seen there is a substarifl§| Same variance. The estimator is unbiased for low noise

reduction in the dimensions of the uncertainty ellipses. In ordé2ances.

to minimize the error due to Gaussian noise we should choose

the three reference nodes (in 3D) as far as possible. In practice, VI. | MPLEMENTATION DETAILS

using the TOI_: matrix we can choose three nodes _such thatmeCalibration Signals

area of the triangle formed by these three nodes is maximum.

In this way we can dynamically adapt our coordinate system!n order to measure the TOF accurately the calibration

to minimize the error even though the array geometry m&gnal has to be appropriately selected and the parameters
change drastically. properly tuned. Chirp signals and Maximum Length sequences

are the two most popular sequences for this task. A linear

chirp signal is a short pulse in which the frequency of the

signal varies linearly between two preset frequencies. The
We performed a series of Monte Carlo simulations to congesine linear chirp signal of duratidhi with the instantaneous

pare the performance of the different estimation procedurésquency varying linearly betweefy, and f; is given by

16 microphones and 16 speakers were randomly selectedstt = Acos(2m(fo + (%)t)) 0 <t <T In our system,

lie in a room of dimensiong.0m x 4.0m x 4.0m. The speaker we used the chirp signal of 512 samples at 44.1kHz (11.61

was chosen to be close to the microphone in order to simulats) as our calibration signal. The instantaneous frequency

V. MONTE CARLO SIMULATION RESULTS
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Fig. 7. (a) The total variance and (b) total bias of all the microphone coordinates for increasing TOF noise standard deVia¢éi@ensor network consisted
of 16 microphones and 16 speakers. The results are shown for both the TOF and TDOF-based Position and Joint EstimatiorerTRacddsaond for the
TDOF based Joint Estimation is also plotted. For the TDOF-based method the noise variance was taken as twice that of the TOF variance.

@ (b)

-
o
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(GCC) function. The GCC functiorR,, ., (7) is computed
as [11] Ry, (1) = [75 W(w) X1 (w) X3 (w)e!“Tdw, where
X1 (w), X2(w) are the Fourier transforms of the microphone
signalszy (t), z2(t), respectively andV (w) is the weighting
function. The two most commonly using weighting functions
are the ML and the Phase Transform (PHAT) weighting.
i o o _The ML weighting function, accentuates the signal passed
Fig. 8. (a) The _Ioopback reference chirp signal (b) the chirp signal receN?g the correlator at frequencies for which the signal—to-noise
by one of the microphones

ratio is the highest and, simultaneously suppresses the noise

power [11]. This ML weighting function performs well for
varied linearly from 5 kHz to 10 kHz. The initial and thelow room reverberation. As the room reverberation increases
final frequency was chosen to lie in the common passbhandtbis method shows severe performance degradations. Since the
the microphone and the speaker frequency response. The chjppctral characteristics of the received signal are modified by
signal send by the speaker is convolved with the room impultfee multipath propagation in a room, the GCC function is
response resulting in the spreading of the chirp signal. Figureéade more robust by deemphasizing the frequency dependent
8(a) shows the chirp signal as sent out by the soundcard to ¥eightings. The Phase Transform is one extreme where the
speaker. This signal is recorded by looping the output chanmefignitude spectrum is flattened. The PHAT weighting is
directly back to an input channel, on a multichannel sourgiven by Wpgar(w) = m By flattening out the
card. The initial delay is due to the emission start time amdagnitude spectrum the resulting peak in the GCC function
the capture start time. Figure 8(b) shows the correspondiogrresponds to the dominant delay. However, the disadvantage
chirp signal received by the microphone. The chirp signal & the PHAT weighting is that it places equal emphasizes on
delayed by a certain amount due to the propagation path. Tiwth the low and high SNR regions, and hence it works well
distortion and the spreadout is due to the speaker, microphamdy when the noise level is low. For low noise rooms the
and room response. PHAT method performs moderately well.

© °o o
B o kB N

Reference chirp signal
o
Recejved chirp signal

o
N

o 20 60 80 o 20 60 80

40 40
Time (ms) Time (ms)

B. Time Delay Estimation C. Testbed Setup and Results

This is the most crucial part of the algorithm and also a The alorithm has b di ltime distributed
potential source of error. Hence lot of care has to be taken to, € aigorithm has been tested in a real time distributed setup
ing 5 laptops (IBM T-series Thinkpads with Intel Pentium

get the TOF accurately in noisy and reverberant environments" . .
The time-delay may be found by locating the peak in the cro eries processors). Figure 9(a) shows our experimental setup.

correlation of the signals received over the two microphone he room also had multiple PCs which acted as a noise

However this method is not robust to noise and reverberatioffig"' €S Allthe five Iaptqps were placed on a flat table so that
Knapp and Carter [11] developed a ML estimator for detel€ can form a 2D coordlngte systéinThe ground truth was
mining the time delay between signals received at two spatiaip{asur.ed manually to validate thg results from the posmon
separated sensors in the presence of uncorrelated noise. In% |g)rat|0n methods. For our experiments we used the internal
method, the delay estimate is the time lag which maximizé'%'cr()phOneS and speakers in the laptop.
the cross-correlation between filtered versions of the receiveq _ . _ o

As discussed earlier we need minimum six laptops for the minimization

signa!s [11]. .The cross-correlation of t_he filtered versions _mutine. With 5 laptops we need to know the actual x-coordinate of one of
the signals is called as the Generalized Cross Correlatiba laptops.



11

localization error was 8.2 cm. We also implemented the same
system on a synchronized platform for which the error was
3.8 cm. Our algorithm assumed that the sampling rate was
known for each laptop and the clock does not drift. However in
practice the sampling rate is not as specified and the clock can
also drift. Hence our real time setup integrates the distributed
synchronization scheme using ML sequence as proposed in
[1]. This scheme essentially gives the exact sampling rate on
each of the GPCs.

VII. CONCLUSIONS

In this paper we described the problem of position calibra-

‘ ‘ ‘ ‘ ‘ ‘ tion of acoustic sensors and actuators in a network of dis-
X TOF based . .
b o Q 1o e=ed|| tributed geperal-purpose computing platfo_rms. Our approach
allows putting laptops, PDAs and tablets into a common 3D
ost O Y coordinate system. Together with time synchronization this
# ; * T creates arrays of audio sensors and actuators enabling a rich
o)

set of new multistream A/V applications on platforms that
are available virtually anywhere. We also derived important

0.3+ -

Y coordinate(m)

. bounds on performance of spatial localization algorithms,
wl | proposed optimization techniques to implement them and
) extensively validated the algorithms on simulated and real
o @ * 0 | data.
‘ ‘ Ea2) ‘
70;%).2 o 0.2 0.4 0.6 0.8 1 1.2 1.4
x coordinate(m)
) APPENDIXI
CONVERTING THE DISTANCE MATRIX TO A DOT PRODUCT
Fig. 9. (a) Our experimental setup (b) Results for a setup consisting of 5 MATRIX

laptops each having one internal microphone and speaker. o
Let us say we choose thé'® GPC as the origin of

our coordinate system. Let;; and b;; be the distance and

Capture and play back was done using the free, crdd@tProduct respectively, between th’é and thej*" GPC.
platform, open-source, audio I/O library Portaudio [18]. Modgeferring to Figure 10, using the cosine law,
of the signal processing task_s were implemented using thg Intel &2 = 2, + d2, — 2dyidyjcos(a) (32)
Integrated Performance Primitives (IPP) For the non-linear Y ! J
minimization we used thenrgmin routine from Numerical The dot produch;; is defined as
Recipes in C [14]. For the distributed platform we used the
Universal Plug and Play (UPnP) [19] technology to form an bij = dridy;cos(a) (33)
adhoc network and control the audio devices on differe L .
platforms. UPnP technology is a distributed, open networkir?‘é;tomblnlng the above two equations,
architecture that employs TCP/IP and other Internet technolo-
gies to enable seamless proximity networking [19]. Each of

the laptops has an UPnP service running for playing the ChiI[HJwever this is with respect to theé» GPC as the origin of

signal and capturing the audio stream._ A program on ﬂ?ﬁe coordinate system. We need to get the dot product matrix
master scans the network for all the available UPnP player

. . With the centroid as the origin. L&} be the dot product matrix
First the master starts the audio capture on each of the lapt

b Then the chi ianal is plaved h of t th respect to theé'* GPC as the origin and leB* be the
one Dy one. Then the chirp signal 1s played on each of e, product matrix with the centroid of the data points as the
devices one after the other and the signal is captured.

L . igin. Let X* be to matrix of coordinates with the origin
TOF computation is distributed among all the laptops, in th%hifted to the centroid.

each laptop computes its own TOF and reports it back to t

master. The master performs the minimization routine once it X*=X— ileNX (35)
has the TOF matrix. For the setup consisting of 5 microphones N

and 5 speakers, Figure 9 shows the estimated positionswdferely .y is an N x N matrix who'’s all elements are 1.
the microphones and speakers using both the methods. Beenow B* can be written in terms oB as follows:
locations as got from the closed form approximate solution

are shown as '*'. The localization error for each microphoneB* = XX

or speaker is defined as the euclidean distance between the 1 1 1

actual and the estimated positions. For our setup the average B = § B = glvan B+ vy Bl

1
bij = §(dii +di; — di) (34)
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Fig. 10. Law of cosines

Hence theij?* element inB* is given by

ij N szl N Z bm] + — N2 Zzbop (36)

o=1p=1

*
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actual actual
orOFy; " OTOFL™  ma, — sa
8mxi N asx] ~cllmi — s
actual actual
oTOF; " GTOFL™™  my, — sy,
amyi 883/] cllm; — s
actual actual
orOFy""  aTOF mzi — sz
(“)mzi N 83,2] —c|lmi — s
~ _actual ~ _actual
oTOF oTOF L @)
8t8j B 8tml
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Zd

Substituting Equation 34 we get
o=1p=1

N
* 1 2 1 2
bij:*§ dij*NE dy — E:dmy+
=1
(CTORNG1

m=1
This operation is also known as double centering i.e. subtract
the row and the column means from its elements and add tl'[\ﬁ
grand mean and then multiply by2

APPENDIX I K]

DERIVATIVES

Following are the derivable which are needed for the mini-[4]

mization routine and the Cramer-Rao bound. These derivatives
form the non-zero elements of the Jacobian matrix. 5]

ac ual
3TDOF ' MT; — ST; [6]
8ma:z- cllm; — s4]|
~ actual
OTDOF _ mTp — STy [7
omay, cllmi — sl
~ actual g
OTDOF _ Myi — 8Y; (8]
omy; cllm; — sl
aTDOFaCtual ’ El
i myr — SY;
5 kj _ Yk Yj [10]
myk cllmy — sl
actual
6TDOF _ mz; — Szj [11]
8mzi cllm; — s
J
ac ual
OTDOF '  mzp — 8zj Hg
amzk cllmy — sl [14]
actual
8TDOF _mx; — s ML — ST;
oz cllmi —s;1 ™ cllmi = 5] e
actual
3TDOF _ my; — SY; myr — SYj [17]
Bsyj cllmi — sl cllmy — s "
~tual
OTDOFy;""  mzi—sz | mz —sz [19]
sz cllmi — sl cllmy — s
l ~ ctual
dTDOF,," aTDOF " L e
otmy, - otm; B

REFERENCES

R. Lienhart, |. Kozintsev, S. Wehr, and M. Yeung, “On the importance of
exact synchronization for distributed audio processing,Pinc. IEEE

Int. Conf. Acoust., Speech, Signal Processifgril 2003.

Y. Rockah and P. M. Schultheiss, “Array shape calibration using sources
in unknown locationsPart II: Near-field sources and estimator imple-
mentation,”|IEEE Trans. Acoust., Speech, Signal Processing ASSP-

35, pp. 724-735, June 1987.

J. M. Sachar, H. F. Silverman, and W. R. Patterson Ill, “Position
calibration of large-aperture microphone arrays,” Rroc. IEEE Int.
Conf. Acoust., Speech, Signal Processimg 11-1797 — 11-1800, 2002.

A. J. Weiss and B. Friedlander, “Array shape calibration using sources
in unknown locations-a maxilmum-likelihood approactZEE Trans.
Acoust., Speech, Signal Processiugl. 37, pp. 1958-1966, December
1989.

B. C. Ng and C. M. S. See, “Sensor-array calibration using a maxilmum-
likelihood approach,1IEEE Trans. Acoust., Speech, Signal Processing
vol. 44, pp. 827-835, June 1996.

R. Moses, D. Krishnamurthy, and R. Patterson, “A self-localization
method for wireless sensor network&urasip Journal on Applied
Signal Processing Special Issue on Sensor Netwodts2003, pp. 348—
358, March 2003.

A. Savvides, C. C. Han, and M. B. Srivastava, “Dynamic fine-grained
localization in ad-hoc wireless sensor networks,Piroc. International
Conference on Mobile Computing and Networkidgly 2001.

L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin, “Locating tiny sensors
in time and space: A case study,” Rroc. International Conference on
Computer DesignSeptember 2002.

W. S. Torgerson, “Multidimensional scaling:
Psychometrikavol. 17, pp. 401-419, 1952.
J. A. Fessler, “Mean and variance of implicitly defined biased estimators
(such as penalized maximum likelihood): Applications to tomography,”
IEEE Trans. on Image Processingol. 5, pp. 493-506, March 1996.

C. H. Knapp and G. C. Carter, “The generalized correlation method
for estimation of time delay,JEEE Trans. Acoust., Speech, Signal
Processingvol. ASSP-24, pp. 320-327, August 1976.

D. P. BetrsekasNonlinear Programming Athena Scientific, 1995.

P. E. Gill, W. Murray, and M. H. WrightPractical Optimization 1981.

H. P. Press, S. A. Teukolsky, W. T. Vettring, and B. P. Flannery,
Numerical Recipes in C The Art of Scientific Computir@ambridge
University Press, 2 ed., 1995.

“http://www.netlib.org/minpack/.”

M. Steyvers, “Multideimnsional scaling,Encyclopedia of Cognitive
Science 2002.

H. L. Van TreesDetection, Estimation, and Modulation Thepwpl. Part

1. Wiley-Interscience, 2001.

“http://www.portaudio.com/.”

“http://intel.com/technology/upnp/.”

I. theory and method,”



